Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
-
from sgmse.model import ScoreModel
|
4 |
import gradio as gr
|
|
|
5 |
from sgmse.util.other import pad_spec
|
6 |
import time # Import the time module
|
|
|
7 |
|
8 |
-
# Define parameters based on the
|
9 |
args = {
|
10 |
"test_dir": "./test_data", # example directory, adjust as needed
|
11 |
"enhanced_dir": "./enhanced_data", # example directory, adjust as needed
|
@@ -24,7 +25,7 @@ def enhance_speech(audio_file):
|
|
24 |
start_time = time.time() # Start the timer
|
25 |
|
26 |
# Load and process the audio file
|
27 |
-
y, sr = torchaudio.load(audio_file)
|
28 |
print(f"Loaded audio in {time.time() - start_time:.2f}s")
|
29 |
T_orig = y.size(1)
|
30 |
|
@@ -51,19 +52,21 @@ def enhance_speech(audio_file):
|
|
51 |
# Renormalize
|
52 |
x_hat = x_hat * norm_factor
|
53 |
|
54 |
-
# Save the enhanced audio
|
55 |
-
output_file =
|
56 |
torchaudio.save(output_file, x_hat.cpu(), sr)
|
57 |
|
58 |
print(f"Processed audio in {time.time() - start_time:.2f}s")
|
|
|
|
|
59 |
return output_file
|
60 |
|
61 |
# Gradio interface setup
|
62 |
-
inputs = gr.Audio(label="Input Audio", type="
|
63 |
-
outputs = gr.Audio(label="
|
64 |
title = "Speech Enhancement using SGMSE"
|
65 |
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it."
|
66 |
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>"
|
67 |
|
68 |
-
# Launch
|
69 |
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch()
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
|
|
3 |
import gradio as gr
|
4 |
+
from sgmse.model import ScoreModel
|
5 |
from sgmse.util.other import pad_spec
|
6 |
import time # Import the time module
|
7 |
+
import os
|
8 |
|
9 |
+
# Define parameters based on the configuration in enhancement.py
|
10 |
args = {
|
11 |
"test_dir": "./test_data", # example directory, adjust as needed
|
12 |
"enhanced_dir": "./enhanced_data", # example directory, adjust as needed
|
|
|
25 |
start_time = time.time() # Start the timer
|
26 |
|
27 |
# Load and process the audio file
|
28 |
+
y, sr = torchaudio.load(audio_file.name) # Gradio passes the file as a file-like object
|
29 |
print(f"Loaded audio in {time.time() - start_time:.2f}s")
|
30 |
T_orig = y.size(1)
|
31 |
|
|
|
52 |
# Renormalize
|
53 |
x_hat = x_hat * norm_factor
|
54 |
|
55 |
+
# Save the enhanced audio to a temporary file for Gradio output
|
56 |
+
output_file = "enhanced_output.wav"
|
57 |
torchaudio.save(output_file, x_hat.cpu(), sr)
|
58 |
|
59 |
print(f"Processed audio in {time.time() - start_time:.2f}s")
|
60 |
+
|
61 |
+
# Return the path to the enhanced file for Gradio to handle
|
62 |
return output_file
|
63 |
|
64 |
# Gradio interface setup
|
65 |
+
inputs = gr.Audio(label="Input Audio", type="file") # Adjusted for file input
|
66 |
+
outputs = gr.Audio(label="Enhanced Audio", type="file") # Output as file
|
67 |
title = "Speech Enhancement using SGMSE"
|
68 |
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it."
|
69 |
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>"
|
70 |
|
71 |
+
# Launch the Gradio interface
|
72 |
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch()
|