File size: 2,547 Bytes
740a68f
 
 
8a51868
a297d3b
2d14ce1
d0dbc2d
8a4b264
 
 
 
 
 
 
 
 
 
 
 
740a68f
8a4b264
8a51868
740a68f
2d14ce1
c0fc3e6
740a68f
e6e1f50
c0fc3e6
8a4b264
a297d3b
 
 
 
8a4b264
a297d3b
8a4b264
c0fc3e6
 
1acbf3a
8a4b264
a297d3b
 
8a4b264
 
 
a297d3b
8a4b264
a297d3b
 
 
 
 
8a4b264
740a68f
 
8a4b264
c0fc3e6
 
740a68f
 
 
 
 
 
 
 
 
38a61d7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torchaudio
from sgmse.model import ScoreModel
import gradio as gr
from sgmse.util.other import pad_spec
import time  # Import the time module

# Define parameters based on the argparse configuration in enhancement.py
args = {
    "test_dir": "./test_data",  # example directory, adjust as needed
    "enhanced_dir": "./enhanced_data",  # example directory, adjust as needed
    "ckpt": "https://huggingface.co/sp-uhh/speech-enhancement-sgmse/resolve/main/train_vb_29nqe0uh_epoch%3D115.ckpt",
    "corrector": "ald",
    "corrector_steps": 1,
    "snr": 0.5,
    "N": 30,
    "device": "cuda" if torch.cuda.is_available() else "cpu"
}

# Load the pre-trained model
model = ScoreModel.load_from_checkpoint(args["ckpt"])

def enhance_speech(audio_file):
    start_time = time.time()  # Start the timer

    # Load and process the audio file
    y, sr = torchaudio.load(audio_file)
    print(f"Loaded audio in {time.time() - start_time:.2f}s")
    T_orig = y.size(1)

    # Normalize
    norm_factor = y.abs().max()
    y = y / norm_factor

    # Prepare DNN input
    Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args["device"]))), 0)
    print(f"Transformed input in {time.time() - start_time:.2f}s")

    Y = pad_spec(Y, mode="zero_pad")  # Use "zero_pad" mode for padding

    # Reverse sampling
    sampler = model.get_pc_sampler(
        'reverse_diffusion', args["corrector"], Y.to(args["device"]),
        N=args["N"], corrector_steps=args["corrector_steps"], snr=args["snr"]
    )
    sample, _ = sampler()

    # Backward transform in time domain
    x_hat = model.to_audio(sample.squeeze(), T_orig)

    # Renormalize
    x_hat = x_hat * norm_factor

    # Save the enhanced audio
    output_file = 'enhanced_output.wav'
    torchaudio.save(output_file, x_hat.cpu(), sr)

    print(f"Processed audio in {time.time() - start_time:.2f}s")
    return output_file

# Gradio interface setup
inputs = gr.Audio(label="Input Audio", type="filepath")
outputs = gr.Audio(label="Output Audio", type="filepath")
title = "Speech Enhancement using SGMSE"
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it."
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>"

# Launch without share=True (as it's not supported on Hugging Face Spaces)
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch()