File size: 6,791 Bytes
8a2b97e
 
 
122b2e0
 
 
7fc63ef
 
122b2e0
 
 
 
7fc63ef
 
 
8a2b97e
 
 
122b2e0
ce756cd
122b2e0
ce756cd
 
 
 
 
122b2e0
 
 
 
 
 
 
 
ce756cd
8a2b97e
ce756cd
 
122b2e0
 
 
 
 
 
ce756cd
 
7fc63ef
8a2b97e
ce756cd
 
122b2e0
ce756cd
 
 
 
 
 
 
 
 
122b2e0
 
ce756cd
 
 
 
122b2e0
ce756cd
 
 
 
122b2e0
ce756cd
122b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce756cd
 
 
 
 
 
7fc63ef
8a2b97e
 
 
ce756cd
 
122b2e0
ce756cd
8a2b97e
ce756cd
122b2e0
ce756cd
 
122b2e0
 
 
 
 
7fc63ef
 
 
 
 
 
 
 
 
 
 
122b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc63ef
8a2b97e
 
 
7398b02
332c046
122b2e0
 
ce756cd
 
 
332c046
122b2e0
 
ce756cd
 
8a2b97e
122b2e0
 
 
 
8a2b97e
ce756cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import requests
import json
import gradio as gr
# from concurrent.futures import ThreadPoolExecutor
import pdfplumber
import pandas as pd
import time
from cnocr import CnOcr
from sentence_transformers import SentenceTransformer, models, util
word_embedding_model = models.Transformer('uer/sbert-base-chinese-nli', do_lower_case=True)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls')
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
ocr = CnOcr()
# chat_url = 'https://souljoy-my-api.hf.space/sale'
chat_url = 'https://souljoy-my-api.hf.space/chatpdf'
headers = {
    'Content-Type': 'application/json',
}
# thread_pool_executor = ThreadPoolExecutor(max_workers=4)
history_max_len = 500
all_max_len = 3000


def get_emb(text):
    emb_url = 'https://souljoy-my-api.hf.space/embeddings'
    data = {"content": text}
    try:
        result = requests.post(url=emb_url,
                               data=json.dumps(data),
                               headers=headers
                               )
        return result.json()['data'][0]['embedding']
    except Exception as e:
        print('data', data, 'result json', result.json())


def doc_emb(doc: str):
    texts = doc.split('\n')
    # futures = []
    emb_list = embedder.encode(texts)
    # for text in texts:
    #     futures.append(thread_pool_executor.submit(get_emb, text))
    # for f in futures:
    #     emb_list.append(f.result())
    print('\n'.join(texts))
    return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
        value="""操作说明 step 3:PDF解析提交成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True)


def get_response(msg, bot, doc_text_list, doc_embeddings):
    # future = thread_pool_executor.submit(get_emb, msg)
    now_len = len(msg)
    req_json = {'question': msg}
    his_bg = -1
    for i in range(len(bot) - 1, -1, -1):
        if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
            break
        now_len += len(bot[i][0]) + len(bot[i][1])
        his_bg = i
    req_json['history'] = [] if his_bg == -1 else bot[his_bg:]
    # query_embedding = future.result()
    query_embedding = embedder.encode([msg])
    cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
    score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
    score_index.sort(key=lambda x: x[0], reverse=True)
    print('score_index:\n', score_index)
    index_set, sub_doc_list = set(), []
    for s_i in score_index:
        doc = doc_text_list[s_i[1]]
        if now_len + len(doc) > all_max_len:
            break
        index_set.add(s_i[1])
        now_len += len(doc)
        # 可能段落截断错误,所以把上下段也加入进来
        if s_i[1] > 0 and s_i[1] -1 not in index_set:
            doc = doc_text_list[s_i[1]-1]
            if now_len + len(doc) > all_max_len:
                break
            index_set.add(s_i[1]-1)
            now_len += len(doc)
        if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
            doc = doc_text_list[s_i[1]+1]
            if now_len + len(doc) > all_max_len:
                break
            index_set.add(s_i[1]+1)
            now_len += len(doc)

    index_list = list(index_set)
    index_list.sort()
    for i in index_list:
        sub_doc_list.append(doc_text_list[i])
    req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
    data = {"content": json.dumps(req_json)}
    print('data:\n', req_json)
    result = requests.post(url=chat_url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = result.json()['content']
    bot.append([msg, res])
    return bot[max(0, len(bot) - 3):]


def up_file(files):
    doc_text_list = []
    for idx, file in enumerate(files):
        print(file.name)
        with pdfplumber.open(file.name) as pdf:
            for i in range(len(pdf.pages)):
                # 读取PDF文档第i+1页
                page = pdf.pages[i]
                res_list = page.extract_text().split('\n')[:-1]

                for j in range(len(page.images)):
                    # 获取图片的二进制流
                    img = page.images[j]
                    file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j))
                    with open(file_name, mode='wb') as f:
                        f.write(img['stream'].get_data())
                    res = ocr.ocr(file_name)
                    if len(res) > 0:
                        res_list.append(' '.join([re['text'] for re in res]))

                tables = page.extract_tables()
                for table in tables:
                    # 第一列当成表头:
                    df = pd.DataFrame(table[1:], columns=table[0])
                    try:
                        records = json.loads(df.to_json(orient="records", force_ascii=False))
                        for rec in records:
                            res_list.append(json.dumps(rec, ensure_ascii=False))
                    except Exception as e:
                        res_list.append(str(df))

                doc_text_list += res_list

    for i in doc_text_list:
        print(i)
    return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
        visible=True), gr.Markdown.update(
        value="操作说明 step 2:确认PDF解析结果(可修正),点击“提交解析结果”,随后进行对话")


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            file = gr.File(file_types=['.pdf'], label='点击上传PDF,进行解析', file_count='multiple')
            doc_bu = gr.Button(value='提交解析结果', visible=False)
            txt = gr.Textbox(label='PDF解析结果', visible=False)
            doc_text_state = gr.State([])
            doc_emb_state = gr.State([])
        with gr.Column():
            md = gr.Markdown("""操作说明 step 1:点击左侧区域,上传PDF,进行解析""")
            chat_bot = gr.Chatbot(visible=False)
            msg_txt = gr.Textbox(label='消息框', placeholder='输入消息,点击发送', visible=False)
            chat_bu = gr.Button(value='发送', visible=False)

    file.change(up_file, [file], [txt, doc_bu, md])
    doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot])
    chat_bu.click(get_response, [msg_txt, chat_bot, doc_text_state, doc_emb_state], [chat_bot])

if __name__ == "__main__":
    demo.queue().launch()
    # demo.queue().launch(share=False, server_name='172.22.2.54', server_port=9191)