File size: 6,523 Bytes
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import json
import logging
import os
from pathlib import Path
from typing import Union

import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder

from mmaudio.utils.dist_utils import local_rank

log = logging.getLogger()

_CLIP_SIZE = 384
_CLIP_FPS = 8.0

_SYNC_SIZE = 224
_SYNC_FPS = 25.0


class VideoDataset(Dataset):

    def __init__(
        self,
        video_root: Union[str, Path],
        *,
        duration_sec: float = 8.0,
    ):
        self.video_root = Path(video_root)

        self.duration_sec = duration_sec

        self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
        self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)

        self.clip_transform = v2.Compose([
            v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
            v2.ToImage(),
            v2.ToDtype(torch.float32, scale=True),
        ])

        self.sync_transform = v2.Compose([
            v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
            v2.CenterCrop(_SYNC_SIZE),
            v2.ToImage(),
            v2.ToDtype(torch.float32, scale=True),
            v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])

        # to be implemented by subclasses
        self.captions = {}
        self.videos = sorted(list(self.captions.keys()))

    def sample(self, idx: int) -> dict[str, torch.Tensor]:
        video_id = self.videos[idx]
        caption = self.captions[video_id]

        reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
        reader.add_basic_video_stream(
            frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
            frame_rate=_CLIP_FPS,
            format='rgb24',
        )
        reader.add_basic_video_stream(
            frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
            frame_rate=_SYNC_FPS,
            format='rgb24',
        )

        reader.fill_buffer()
        data_chunk = reader.pop_chunks()

        clip_chunk = data_chunk[0]
        sync_chunk = data_chunk[1]
        if clip_chunk is None:
            raise RuntimeError(f'CLIP video returned None {video_id}')
        if clip_chunk.shape[0] < self.clip_expected_length:
            raise RuntimeError(
                f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
            )

        if sync_chunk is None:
            raise RuntimeError(f'Sync video returned None {video_id}')
        if sync_chunk.shape[0] < self.sync_expected_length:
            raise RuntimeError(
                f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
            )

        # truncate the video
        clip_chunk = clip_chunk[:self.clip_expected_length]
        if clip_chunk.shape[0] != self.clip_expected_length:
            raise RuntimeError(f'CLIP video wrong length {video_id}, '
                               f'expected {self.clip_expected_length}, '
                               f'got {clip_chunk.shape[0]}')
        clip_chunk = self.clip_transform(clip_chunk)

        sync_chunk = sync_chunk[:self.sync_expected_length]
        if sync_chunk.shape[0] != self.sync_expected_length:
            raise RuntimeError(f'Sync video wrong length {video_id}, '
                               f'expected {self.sync_expected_length}, '
                               f'got {sync_chunk.shape[0]}')
        sync_chunk = self.sync_transform(sync_chunk)

        data = {
            'name': video_id,
            'caption': caption,
            'clip_video': clip_chunk,
            'sync_video': sync_chunk,
        }

        return data

    def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
        try:
            return self.sample(idx)
        except Exception as e:
            log.error(f'Error loading video {self.videos[idx]}: {e}')
            return None

    def __len__(self):
        return len(self.captions)


class VGGSound(VideoDataset):

    def __init__(
        self,
        video_root: Union[str, Path],
        csv_path: Union[str, Path],
        *,
        duration_sec: float = 8.0,
    ):
        super().__init__(video_root, duration_sec=duration_sec)
        self.video_root = Path(video_root)
        self.csv_path = Path(csv_path)

        videos = sorted(os.listdir(self.video_root))
        if local_rank == 0:
            log.info(f'{len(videos)} videos found in {video_root}')
        self.captions = {}

        df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption',
                                                       'split']).to_dict(orient='records')

        videos_no_found = []
        for row in df:
            if row['split'] == 'test':
                start_sec = int(row['sec'])
                video_id = str(row['id'])
                # this is how our videos are named
                video_name = f'{video_id}_{start_sec:06d}'
                if video_name + '.mp4' not in videos:
                    videos_no_found.append(video_name)
                    continue

                self.captions[video_name] = row['caption']

        if local_rank == 0:
            log.info(f'{len(videos)} videos found in {video_root}')
            log.info(f'{len(self.captions)} useable videos found')
            if videos_no_found:
                log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}')
                log.info(
                    'A small amount is expected, as not all videos are still available on YouTube')

        self.videos = sorted(list(self.captions.keys()))


class MovieGen(VideoDataset):

    def __init__(
        self,
        video_root: Union[str, Path],
        jsonl_root: Union[str, Path],
        *,
        duration_sec: float = 10.0,
    ):
        super().__init__(video_root, duration_sec=duration_sec)
        self.video_root = Path(video_root)
        self.jsonl_root = Path(jsonl_root)

        videos = sorted(os.listdir(self.video_root))
        videos = [v[:-4] for v in videos]  # remove extensions
        self.captions = {}

        for v in videos:
            with open(self.jsonl_root / (v + '.jsonl')) as f:
                data = json.load(f)
                self.captions[v] = data['audio_prompt']

        if local_rank == 0:
            log.info(f'{len(videos)} videos found in {video_root}')

        self.videos = videos