File size: 4,398 Bytes
d07a8ac
73ed896
 
 
 
 
 
 
d07a8ac
 
 
 
 
 
 
73ed896
2c4e2b0
 
73ed896
 
 
 
2c4e2b0
73ed896
 
 
 
 
 
d07a8ac
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4e2b0
d07a8ac
73ed896
bac321f
 
 
 
 
73ed896
39a23a5
 
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07a8ac
2c4e2b0
d07a8ac
 
73ed896
d07a8ac
73ed896
 
2c4e2b0
73ed896
 
2c4e2b0
65f1027
39a23a5
73ed896
 
977df40
2c4e2b0
73ed896
 
 
 
 
eb4ead1
 
 
 
73ed896
 
 
bac321f
2c4e2b0
 
73ed896
d07a8ac
2c4e2b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import spaces
import logging
from datetime import datetime
from pathlib import Path

import gradio as gr
import torch
import torchaudio
import os

try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
import tempfile

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()

device = 'cuda'
dtype = torch.bfloat16

model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()


def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = model.seq_cfg

    net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded weights from {model.model_path}')

    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  synchformer_ckpt=model.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()

    return net, feature_utils, seq_cfg


net, feature_utils, seq_cfg = get_model()


@spaces.GPU(duration=120)
@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str):
    
    num_steps = 25
    cfg_strength = 4.5
    duration = 8.0
    rng = torch.Generator(device=device)
    rng.seed()

    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    video_info = load_video(video, duration)
    clip_frames = video_info.clip_frames
    sync_frames = video_info.sync_frames
    duration = video_info.duration_sec
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    # current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    # output_dir.mkdir(exist_ok=True, parents=True)
    # video_save_path = output_dir / f'{current_time_string}.mp4'
    make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
    log.info(f'Saved video to {video_save_path}')
    return video_save_path


video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    description="""
    Video-to-Audio

    NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side). 
    Doing so does not improve results.

    The model has been trained on 8-second videos. Using much longer or shorter videos will degrade performance. Around 5s~12s should be fine.
    """,
    inputs=[
        gr.Video(),
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt', value='music'),
        # gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
        # gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        # gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        # gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='playable_video',
    cache_examples=False,
    title='Sonisphere — Sonic Branding through Multi-modal Audio Synthesis',
    examples=[
    ])


if __name__ == "__main__":
    gr.TabbedInterface([video_to_audio_tab],
                       ['Video-to-Audio']).launch(allowed_paths=[output_dir])