File size: 12,974 Bytes
32c2587 76138e1 12c6f3b 9ba222b 12c6f3b f039650 76138e1 ddd101e 88e9336 b8ab640 732a141 6067055 b8ab640 88e9336 b8ab640 88e9336 b8ab640 12c6f3b 6067055 12c6f3b 6067055 12c6f3b 6067055 12c6f3b 6067055 12c6f3b 6067055 76138e1 12c6f3b 6067055 732a141 6067055 732a141 eacf514 732a141 6067055 732a141 6067055 732a141 6067055 5fb1bc9 6067055 5fb1bc9 6067055 5fb1bc9 6067055 5fb1bc9 6067055 2b70f36 6067055 2b70f36 6067055 2b70f36 732a141 6067055 732a141 6067055 732a141 6067055 732a141 6067055 732a141 6067055 02a0634 6067055 12c6f3b 6067055 76138e1 12c6f3b b8ab640 12c6f3b 76138e1 dbf76b6 12c6f3b 9ba222b 12c6f3b 9ba222b 12c6f3b 9ba222b 12c6f3b 9ba222b 12c6f3b 9ed5b46 12c6f3b fb5493c 12c6f3b b8ab640 12c6f3b b8ab640 12c6f3b b8ab640 12c6f3b b8ab640 7a0e457 12c6f3b 7a0e457 b8ab640 7a0e457 b8ab640 7a0e457 b8ab640 7a0e457 12c6f3b 7a0e457 12c6f3b 7a0e457 12c6f3b 7a0e457 12c6f3b f8842a2 12c6f3b dcf465d 7a0e457 b8ab640 7a0e457 b8ab640 fb5493c b8ab640 dcf465d f8842a2 61186ad dcf465d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import gradio as gr
import argilla as rg
import pandas as pd
import os
import time
from collections import defaultdict
from fastapi import FastAPI
from functools import lru_cache
client = rg.Argilla(
api_url=os.getenv("ARGILLA_API_URL", ""),
api_key=os.getenv("ARGILLA_API_KEY", "")
)
countries = {
"Argentina": {
"iso": "ARG",
"emoji": "🇦🇷"
},
"Bolivia": {
"iso": "BOL",
"emoji": "🇧🇴"
},
"Chile": {
"iso": "CHL",
"emoji": "🇨🇱"
},
"Colombia": {
"iso": "COL",
"emoji": "🇨🇴"
},
"Costa Rica": {
"iso": "CRI",
"emoji": "🇨🇷"
},
"Cuba": {
"iso": "CUB",
"emoji": "🇨🇺"
},
"Ecuador": {
"iso": "ECU",
"emoji": "🇪🇨"
},
"El Salvador": {
"iso": "SLV",
"emoji": "🇸🇻"
},
"España": {
"iso": "ESP",
"emoji": "🇪🇸"
},
"Guatemala": {
"iso": "GTM",
"emoji": "🇬🇹"
},
"Honduras": {
"iso": "HND",
"emoji": "🇭🇳"
},
"México": {
"iso": "MEX",
"emoji": "🇲🇽"
},
"Nicaragua": {
"iso": "NIC",
"emoji": "🇳🇮"
},
"Panamá": {
"iso": "PAN",
"emoji": "🇵🇦"
},
"Paraguay": {
"iso": "PRY",
"emoji": "🇵🇾"
},
"Perú": {
"iso": "PER",
"emoji": "🇵🇪"
},
"Puerto Rico": {
"iso": "PRI",
"emoji": "🇵🇷"
},
"República Dominicana": {
"iso": "DOM",
"emoji": "🇩🇴"
},
"Uruguay": {
"iso": "URY",
"emoji": "🇺🇾"
},
"Venezuela": {
"iso": "VEN",
"emoji": "🇻🇪"
}
}
def get_blend_es_data():
data = []
for country in countries.keys():
iso = countries[country]["iso"]
emoji = countries[country]["emoji"]
dataset_name = f"{emoji} {country} - {iso} - Responder"
try:
print(f"Processing dataset: {dataset_name}")
dataset = client.datasets(dataset_name)
records = list(dataset.records(with_responses=True))
dataset_contributions = defaultdict(int)
user_mapping = {}
for record in records:
record_dict = record.to_dict()
if "answer_1" in record_dict["responses"]:
for answer in record_dict["responses"]["answer_1"]:
if answer["user_id"]:
user_id = answer["user_id"]
dataset_contributions[user_id] += 1
if user_id not in user_mapping:
try:
user = client.users(id=user_id)
user_mapping[user_id] = user.username
except Exception as e:
print(f"Error getting username for {user_id}: {e}")
user_mapping[user_id] = f"User-{user_id[:8]}"
for user_id, count in dataset_contributions.items():
username = user_mapping.get(user_id, f"User-{user_id[:8]}")
data.append({
"source": "blend-es",
"username": username,
"count": count
})
except Exception as e:
print(f"Error processing dataset {dataset_name}: {e}")
return data
def get_include_data():
data = []
try:
if os.path.exists("include.csv"):
include_df = pd.read_csv("include.csv")
if "Nombre en Discord / username" in include_df.columns and "Número de preguntas / number of questions" in include_df.columns:
discord_users = defaultdict(int)
for _, row in include_df.iterrows():
username = row["Nombre en Discord / username"][1:]
questions = row["Número de preguntas / number of questions"]
if pd.notna(username) and pd.notna(questions):
discord_users[username.lower()] += int(questions)
for username, count in discord_users.items():
data.append({
"source": "include",
"username": username,
"count": count
})
except Exception as e:
print(f"Error loading include.csv: {e}")
return data
def get_mail_to_username_mapping():
mail_to_discord = {}
try:
if os.path.exists("mail_to_username.csv"):
mapping_df = pd.read_csv("mail_to_username.csv")
if "gmail" in mapping_df.columns and "discord" in mapping_df.columns:
for _, row in mapping_df.iterrows():
mail = row["gmail"]
discord = row["discord"]
if pd.notna(mail) and pd.notna(discord):
mail_to_discord[mail.lower()] = discord.lower()
except Exception as e:
print(f"Error loading mail_to_username.csv: {e}")
return mail_to_discord
def get_estereotipos_data():
data = []
mail_to_discord = get_mail_to_username_mapping()
try:
if os.path.exists("token_id_counts.csv"):
counts_df = pd.read_csv("token_id_counts.csv")
if "token_id" in counts_df.columns and "count" in counts_df.columns:
mail_counts = defaultdict(int)
for _, row in counts_df.iterrows():
mail = row["token_id"]
count = row["count"]
if pd.notna(mail) and pd.notna(count):
mail_counts[mail.lower()] += int(count)
for mail, count in mail_counts.items():
username = mail_to_discord.get(mail.lower(), "")
if not username:
username = mail.split('@')[0] if '@' in mail else mail
data.append({
"source": "estereotipos",
"username": username,
"count": count
})
except Exception as e:
print(f"Error loading estereotipos data: {e}")
return data
def get_arena_data():
data = []
mail_to_discord = get_mail_to_username_mapping()
try:
if os.path.exists("arena.json"):
import json
with open("arena.json", "r", encoding="utf-8") as f:
arena_data = json.load(f)
mail_counts = defaultdict(int)
for country, conversations in arena_data.items():
for conversation in conversations:
if "username" in conversation:
mail = conversation["username"]
if mail:
mail_counts[mail.lower()] += 1
for mail, count in mail_counts.items():
username = mail_to_discord.get(mail.lower(), "")
if not username:
username = mail.split('@')[0] if '@' in mail else mail
data.append({
"source": "arena",
"username": username,
"count": count
})
except Exception as e:
print(f"Error loading arena data: {e}")
return data
@lru_cache(maxsize=32)
def get_user_contributions_cached(cache_buster: int):
return consolidate_all_data()
def consolidate_all_data():
all_data = []
all_data.extend(get_blend_es_data())
all_data.extend(get_include_data())
all_data.extend(get_estereotipos_data())
all_data.extend(get_arena_data())
user_contributions = defaultdict(lambda: {"username": "", "blend_es": 0, "include": 0, "estereotipos": 0, "arena": 0})
for item in all_data:
source = item["source"]
username = item["username"]
count = item["count"]
user_key = username.lower()
if not user_contributions[user_key]["username"]:
user_contributions[user_key]["username"] = username
if source == "blend-es":
user_contributions[user_key]["blend_es"] += count
elif source == "include":
user_contributions[user_key]["include"] += count
elif source == "estereotipos":
user_contributions[user_key]["estereotipos"] += count
elif source == "arena":
user_contributions[user_key]["arena"] += count
rows = []
for _, data in user_contributions.items():
total = data["blend_es"] + data["include"] + data["estereotipos"] + data["arena"]
row = {
"Username": data["username"],
"Total": total,
"Blend-es": data["blend_es"],
"INCLUDE": data["include"],
"Estereotipos": data["estereotipos"],
"Arena": data["arena"]
}
rows.append(row)
df = pd.DataFrame(rows)
if not df.empty:
df = df.sort_values("Total", ascending=False)
return df
app = FastAPI()
last_update_time = 0
cached_data = None
def create_leaderboard_ui():
global cached_data, last_update_time
current_time = time.time()
if cached_data is not None and current_time - last_update_time < 300:
df = cached_data
else:
cache_buster = int(current_time)
df = get_user_contributions_cached(cache_buster)
cached_data = df
last_update_time = current_time
if not df.empty:
df = df.reset_index(drop=True)
df.index = df.index + 1
df = df.rename_axis("Rank")
df = df.reset_index()
df_html = df.to_html(classes="leaderboard-table", border=0, index=False)
styled_html = f"""
<div style="margin: 20px 0;">
<p>Última Actualización: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(last_update_time))}</p>
<style>
.leaderboard-table {{
width: 100%;
border-collapse: collapse;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
border-radius: 8px;
overflow: hidden;
}}
.leaderboard-table th {{
background-color: #1a1a2e;
color: white;
font-weight: bold;
text-align: left;
padding: 14px;
border-bottom: 2px solid #16213e;
}}
.leaderboard-table td {{
padding: 12px 14px;
border-bottom: 1px solid #333;
background-color: #222;
color: #fff;
}}
.leaderboard-table tr:hover td {{
background-color: #2a2a3a;
}}
.leaderboard-table tr:nth-child(1) td:first-child {{
background-color: #ffd700;
color: #333;
font-weight: bold;
text-align: center;
border-right: 1px solid #333;
}}
.leaderboard-table tr:nth-child(2) td:first-child {{
background-color: #c0c0c0;
color: #333;
font-weight: bold;
text-align: center;
border-right: 1px solid #333;
}}
.leaderboard-table tr:nth-child(3) td:first-child {{
background-color: #cd7f32;
color: #333;
font-weight: bold;
text-align: center;
border-right: 1px solid #333;
}}
.leaderboard-table tr:nth-child(1) td:nth-child(2) {{
font-weight: bold;
color: #ffd700;
}}
.leaderboard-table tr:nth-child(2) td:nth-child(2) {{
font-weight: bold;
color: #c0c0c0;
}}
.leaderboard-table tr:nth-child(3) td:nth-child(2) {{
font-weight: bold;
color: #cd7f32;
}}
</style>
{df_html}
</div>
"""
return styled_html
def refresh_data():
global cached_data, last_update_time
cached_data = None
last_update_time = 0
return create_leaderboard_ui()
with gr.Blocks(theme=gr.themes.Default()) as demo:
with gr.Column(scale=1):
gr.Markdown("""# 🏆 Hackaton Leaderboard""")
leaderboard_html = gr.HTML(create_leaderboard_ui)
refresh_btn = gr.Button("🔄 Actualizar Datos", variant="primary")
refresh_btn.click(fn=refresh_data, outputs=leaderboard_html)
gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |