Spaces:
Runtime error
Runtime error
File size: 4,289 Bytes
4f53cb7 25d0dfd 4f53cb7 0a0d31d 58cf8e5 4b87c3b 9101d08 58cf8e5 072e662 844f39e a9e602c addada5 3fb0314 4f53cb7 cd5bec3 4f53cb7 1521ff0 140d623 4f53cb7 0452f9c e906974 4f53cb7 140d623 4f53cb7 cd5bec3 4f53cb7 cd5bec3 140d623 bb02454 140d623 4f53cb7 70888c4 4b87c3b f7be4b4 70888c4 1dc8523 4f53cb7 241a8e5 0a0d31d 241a8e5 20ec549 4f53cb7 140d623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig
import os
#sft_model = "somosnlp/ComeBien_mistral-7b-instruct-v0.2-bnb-4bit"
#base_model_name = "unsloth/Mistral-7B-Instruct-v0.2"
#sft_model = "somosnlp/ComeBien_gemma-2b-it-bnb-4bit"
sft_model = "somosnlp/RecetasDeLaAbuela5k_gemma-2b-bnb-4bit"
base_model_name = "unsloth/gemma-2b-bnb-4bit"
#base_model_name = "unsloth/gemma-2b-it-bnb-4bit"
max_seq_length=200
base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,)
tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length)
ft_model = PeftModel.from_pretrained(base_model, sft_model)
model = ft_model.merge_and_unload()
model.save_pretrained(".")
tokenizer.save_pretrained(".")
class ListOfTokensStoppingCriteria(StoppingCriteria):
"""
Clase para definir un criterio de parada basado en una lista de tokens espec铆ficos.
"""
def __init__(self, tokenizer, stop_tokens):
self.tokenizer = tokenizer
# Codifica cada token de parada y guarda sus IDs en una lista
self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]
def __call__(self, input_ids, scores, **kwargs):
# Verifica si los 煤ltimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
for stop_token_ids in self.stop_token_ids_list:
len_stop_tokens = len(stop_token_ids)
if len(input_ids[0]) >= len_stop_tokens:
if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
return True
return False
# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada
# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)
# A帽ade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
def generate_text(prompt, context, max_length=2100):
prompt=prompt.replace("\n", "").replace("驴","").replace("?","")
input_text = f'''<bos><start_of_turn>system\n{context}?<end_of_turn><start_of_turn>user\n{prompt}<end_of_turn><start_of_turn>model\n'''
inputs = tokenizer.encode(input_text, return_tensors="pt", add_special_tokens=False).to("cuda:0")
max_new_tokens=max_length
generation_config = GenerationConfig(
max_new_tokens=max_new_tokens,
temperature=0.1, #top_p=0.9, top_k=50, # 45
repetition_penalty=1.3, # 1.04, #1.1
do_sample=True,
)
outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,)
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True
def mostrar_respuesta(pregunta, contexto):
try:
res= generate_text(pregunta, contexto, max_length=700)
return str(res)
except Exception as e:
return str(e)
# Ejemplos de preguntas
mis_ejemplos = [
["驴Dime el nivel de calor铆as de la tortilla de patatas?", "Eres un agente experto en nutrici贸n y cocina.", model, tokenizer],
["驴Dime el nivel de grasas del ceviche?", "Eres un agente experto en nutrici贸n y cocina.", model, tokenizer],
["驴Dime la cantidad de fibra de los frijoles?", "Eres un agente experto en nutrici贸n y cocina.", model, tokenizer],
["驴Dime el valor nutricional de la tortilla de patatas?", "Eres un agente experto en nutrici贸n y cocina.", model, tokenizer],
]
iface = gr.Interface(
fn=mostrar_respuesta,
inputs=[gr.Textbox(label="Pregunta"), gr.Textbox(label="Contexto", value="Eres un agente experto en nutrici贸n y cocina."),],
outputs=[gr.Textbox(label="Respuesta", lines=6),],
title="ComeBien",
description="Introduce tu pregunta sobre nutrici贸n y recetas de cocina.",
examples=mis_ejemplos,
)
iface.queue(max_size=14).launch() # share=True,debug=True |