Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
# Load model and tokenizer (using CPU for broader accessibility) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
outputs = model.generate(**inputs, max_length=200) | |
text = tokenizer.batch_decode(outputs)[0] | |
return text | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[gr.Textbox(lines=5, label="Enter your prompt")], | |
outputs="text", | |
title="PHI-2 Text Generator", | |
description="Generate text using the PHI-2 generative language model", | |
) | |
# Launch the interface | |
iface.launch() |