Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,98 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import spacy
|
3 |
-
from spacy import displacy
|
4 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
5 |
-
from transformers import pipeline
|
6 |
-
import pandas as pd
|
7 |
-
|
8 |
-
|
9 |
-
st.title('Named Entity Recognizer')
|
10 |
-
|
11 |
-
st.write('Named Entity Recognition (NER) is like a smart highlighter that scans through text and highlights important words, such as people’s names, places, companies, and dates.
|
12 |
-
|
13 |
-
st.write('')
|
14 |
-
|
15 |
-
with st.form(key='form_named_entity_recognition'):
|
16 |
-
|
17 |
-
input_from_user = st.text_area('enter your input')
|
18 |
-
|
19 |
-
model_options = st.selectbox('choose a model', ('Choose a model', 'Spacy\'s en_core_web_sm model', 'dslim/bert-base-NER model'))
|
20 |
-
|
21 |
-
submit_button = st.form_submit_button('Submit')
|
22 |
-
|
23 |
-
|
24 |
-
if submit_button:
|
25 |
-
|
26 |
-
if input_from_user == '':
|
27 |
-
|
28 |
-
st.error('empty form submitted')
|
29 |
-
|
30 |
-
else:
|
31 |
-
|
32 |
-
if model_options == 'Choose a model':
|
33 |
-
|
34 |
-
st.error('Please choose a model for named entity recognition')
|
35 |
-
|
36 |
-
else:
|
37 |
-
|
38 |
-
st.subheader('Result Analysis')
|
39 |
-
|
40 |
-
if model_options == 'Choose a model':
|
41 |
-
|
42 |
-
st.error('Please choose a model for Named Entity Recognition')
|
43 |
-
|
44 |
-
elif model_options == 'Spacy\'s en_core_web_sm model':
|
45 |
-
|
46 |
-
st.write('Model Used for Named Entity Recognition:')
|
47 |
-
st.success(model_options)
|
48 |
-
|
49 |
-
spacy_model = spacy.load('en_core_web_sm')
|
50 |
-
|
51 |
-
res = spacy_model(input_from_user)
|
52 |
-
|
53 |
-
st.write(f'Analysis of the detected entities from the text ==>')
|
54 |
-
st.markdown(f'**{input_from_user}**')
|
55 |
-
|
56 |
-
entities = [{'Entity': entity.text, 'Label of the Entity': entity.label_, 'Description of the Label': spacy.explain(entity.label_)} for entity in res.ents]
|
57 |
-
|
58 |
-
df = pd.DataFrame(entities)
|
59 |
-
|
60 |
-
st.table(df)
|
61 |
-
|
62 |
-
st.write('Entites marked in the input text:')
|
63 |
-
st.markdown(displacy.render(res, style='ent'), unsafe_allow_html=True)
|
64 |
-
|
65 |
-
elif model_options == 'dslim/bert-base-NER model':
|
66 |
-
|
67 |
-
st.write('Model Used for Named Entity Recognition:')
|
68 |
-
st.success(model_options)
|
69 |
-
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
71 |
-
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
72 |
-
|
73 |
-
bert_ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
|
74 |
-
|
75 |
-
res = bert_ner_model(input_from_user)
|
76 |
-
|
77 |
-
abbreviations = {
|
78 |
-
"O": "Outside of a named entity",
|
79 |
-
"B-MISC": "Beginning of a miscellaneous entity right after another miscellaneous entity",
|
80 |
-
"I-MISC": "Miscellaneous entity",
|
81 |
-
"B-PER": "Beginning of a person’s name right after another person’s name",
|
82 |
-
"I-PER": "Person’s name",
|
83 |
-
"B-ORG": "Beginning of an organization right after another organization",
|
84 |
-
"I-ORG": "Organization",
|
85 |
-
"B-LOC": "Beginning of a location right after another location",
|
86 |
-
"I-LOC": "Location"
|
87 |
-
}
|
88 |
-
|
89 |
-
st.write(f'Analysis of the detected entities from the text ==>')
|
90 |
-
st.markdown(f'**{input_from_user}**')
|
91 |
-
|
92 |
-
entities = [{'Entity': input_from_user[entity['start']:entity['end']], 'Label of the Entity': entity['entity'], 'Description of the Label': abbreviations.get(entity['entity'])} for entity in res]
|
93 |
-
|
94 |
-
df = pd.DataFrame(entities)
|
95 |
-
|
96 |
-
st.table(df)
|
97 |
-
|
98 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import spacy
|
3 |
+
from spacy import displacy
|
4 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
5 |
+
from transformers import pipeline
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
st.title('Named Entity Recognizer')
|
10 |
+
|
11 |
+
st.write('Named Entity Recognition (NER) is like a smart highlighter that scans through text and highlights important words, such as people’s names, places, companies, and dates.')
|
12 |
+
|
13 |
+
st.write('')
|
14 |
+
|
15 |
+
with st.form(key='form_named_entity_recognition'):
|
16 |
+
|
17 |
+
input_from_user = st.text_area('enter your input')
|
18 |
+
|
19 |
+
model_options = st.selectbox('choose a model', ('Choose a model', 'Spacy\'s en_core_web_sm model', 'dslim/bert-base-NER model'))
|
20 |
+
|
21 |
+
submit_button = st.form_submit_button('Submit')
|
22 |
+
|
23 |
+
|
24 |
+
if submit_button:
|
25 |
+
|
26 |
+
if input_from_user == '':
|
27 |
+
|
28 |
+
st.error('empty form submitted')
|
29 |
+
|
30 |
+
else:
|
31 |
+
|
32 |
+
if model_options == 'Choose a model':
|
33 |
+
|
34 |
+
st.error('Please choose a model for named entity recognition')
|
35 |
+
|
36 |
+
else:
|
37 |
+
|
38 |
+
st.subheader('Result Analysis')
|
39 |
+
|
40 |
+
if model_options == 'Choose a model':
|
41 |
+
|
42 |
+
st.error('Please choose a model for Named Entity Recognition')
|
43 |
+
|
44 |
+
elif model_options == 'Spacy\'s en_core_web_sm model':
|
45 |
+
|
46 |
+
st.write('Model Used for Named Entity Recognition:')
|
47 |
+
st.success(model_options)
|
48 |
+
|
49 |
+
spacy_model = spacy.load('en_core_web_sm')
|
50 |
+
|
51 |
+
res = spacy_model(input_from_user)
|
52 |
+
|
53 |
+
st.write(f'Analysis of the detected entities from the text ==>')
|
54 |
+
st.markdown(f'**{input_from_user}**')
|
55 |
+
|
56 |
+
entities = [{'Entity': entity.text, 'Label of the Entity': entity.label_, 'Description of the Label': spacy.explain(entity.label_)} for entity in res.ents]
|
57 |
+
|
58 |
+
df = pd.DataFrame(entities)
|
59 |
+
|
60 |
+
st.table(df)
|
61 |
+
|
62 |
+
st.write('Entites marked in the input text:')
|
63 |
+
st.markdown(displacy.render(res, style='ent'), unsafe_allow_html=True)
|
64 |
+
|
65 |
+
elif model_options == 'dslim/bert-base-NER model':
|
66 |
+
|
67 |
+
st.write('Model Used for Named Entity Recognition:')
|
68 |
+
st.success(model_options)
|
69 |
+
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
71 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
72 |
+
|
73 |
+
bert_ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
|
74 |
+
|
75 |
+
res = bert_ner_model(input_from_user)
|
76 |
+
|
77 |
+
abbreviations = {
|
78 |
+
"O": "Outside of a named entity",
|
79 |
+
"B-MISC": "Beginning of a miscellaneous entity right after another miscellaneous entity",
|
80 |
+
"I-MISC": "Miscellaneous entity",
|
81 |
+
"B-PER": "Beginning of a person’s name right after another person’s name",
|
82 |
+
"I-PER": "Person’s name",
|
83 |
+
"B-ORG": "Beginning of an organization right after another organization",
|
84 |
+
"I-ORG": "Organization",
|
85 |
+
"B-LOC": "Beginning of a location right after another location",
|
86 |
+
"I-LOC": "Location"
|
87 |
+
}
|
88 |
+
|
89 |
+
st.write(f'Analysis of the detected entities from the text ==>')
|
90 |
+
st.markdown(f'**{input_from_user}**')
|
91 |
+
|
92 |
+
entities = [{'Entity': input_from_user[entity['start']:entity['end']], 'Label of the Entity': entity['entity'], 'Description of the Label': abbreviations.get(entity['entity'])} for entity in res]
|
93 |
+
|
94 |
+
df = pd.DataFrame(entities)
|
95 |
+
|
96 |
+
st.table(df)
|
97 |
+
|
98 |
+
|