Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,61 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from fastapi import FastAPI
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
from pydantic import BaseModel
|
6 |
-
import os
|
7 |
-
|
8 |
-
|
9 |
-
load_dotenv()
|
10 |
-
|
11 |
-
|
12 |
-
os.environ["HF_TOKEN"] = os.getenv('HF_TOKEN')
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
}
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from pydantic import BaseModel
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
|
12 |
+
os.environ["HF_TOKEN"] = os.getenv('HF_TOKEN')
|
13 |
+
|
14 |
+
os.environ["HF_HOME"] = "/code/.cache/huggingface"
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
|
21 |
+
origins = ["*"]
|
22 |
+
|
23 |
+
|
24 |
+
app.add_middleware(
|
25 |
+
CORSMiddleware,
|
26 |
+
allow_origins=origins,
|
27 |
+
allow_credentials=True,
|
28 |
+
allow_methods=["*"],
|
29 |
+
allow_headers=["*"],
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class LanguageTextModel(BaseModel):
|
34 |
+
languageText: str
|
35 |
+
sourceLanguageCode: str
|
36 |
+
targetLanguageCode: str
|
37 |
+
|
38 |
+
|
39 |
+
@app.get('/')
|
40 |
+
def welcome():
|
41 |
+
return {
|
42 |
+
'success': True,
|
43 |
+
'message': 'server of "nllb language translator" is up and running successfully '
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
@app.post('/translate')
|
48 |
+
async def translate_text(input: LanguageTextModel):
|
49 |
+
|
50 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
53 |
+
|
54 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=input.sourceLanguageCode, tgt_lang=input.targetLanguageCode, max_length=400)
|
55 |
+
|
56 |
+
response = translator('I am not feeling well')
|
57 |
+
|
58 |
+
return {
|
59 |
+
"success": True,
|
60 |
+
"translated_text": response[0]['translation_text']
|
61 |
}
|