Spaces:
Running
Running
File size: 1,380 Bytes
893a4c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import os
load_dotenv()
os.environ["HF_TOKEN"] = os.getenv('HF_TOKEN')
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class LanguageTextModel(BaseModel):
languageText: str
sourceLanguageCode: str
targetLanguageCode: str
@app.get('/')
def welcome():
return {
'success': True,
'message': 'server of "nllb language translator" is up and running successfully '
}
@app.post('/translate')
async def translate_text(input: LanguageTextModel):
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=input.sourceLanguageCode, tgt_lang=input.targetLanguageCode, max_length=400)
response = translator('I am not feeling well')
return {
"success": True,
"translated_text": response[0]['translation_text']
} |