import streamlit as st
from transformers import pipeline
import PyPDF2
import docx
from io import BytesIO
st.set_page_config(
page_title="TextSphere",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
try:
text_classification_model = pipeline(
"text-classification",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
question_answering_model = pipeline(
"question-answering",
model="distilbert-base-uncased-distilled-squad"
)
translation_model = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-en-fr"
)
summarization_model = pipeline(
"summarization",
model="facebook/bart-large-cnn"
)
except Exception as e:
raise RuntimeError(f"Failed to load models: {str(e)}")
return text_classification_model, question_answering_model, translation_model, summarization_model
def extract_text_from_pdf(uploaded_file):
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text.strip()
except Exception as e:
st.error(f"Error reading the PDF: {e}")
return None
def extract_text_from_docx(uploaded_file):
try:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
st.error(f"Error reading the DOCX: {e}")
return None
def extract_text_from_txt(uploaded_file):
try:
return uploaded_file.read().decode("utf-8")
except Exception as e:
st.error(f"Error reading the TXT file: {e}")
return None
def extract_text_from_file(uploaded_file, file_type):
if file_type == "pdf":
return extract_text_from_pdf(uploaded_file)
elif file_type == "docx":
return extract_text_from_docx(uploaded_file)
elif file_type == "txt":
return extract_text_from_txt(uploaded_file)
return None
try:
classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
st.error(f"An error occurred while loading models: {e}")
st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
"Choose a task",
["Text Summarization", "Question Answering", "Text Classification", "Language Translation"],
index=0
)
if option == "Text Summarization":
st.title("Text Summarization")
st.markdown("- because who needs to read the whole document, anyway? 🥵
", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) [Limit: 1024 Tokens]", type=["pdf", "docx", "txt"])
text_to_summarize = st.text_area("Enter text to summarize (or leave empty if uploading a file):")
if uploaded_file:
file_type = uploaded_file.name.split(".")[-1].lower()
text_to_summarize = extract_text_from_file(uploaded_file, file_type)
if st.button("Summarize"):
with st.spinner('Summarizing text...'):
try:
if text_to_summarize:
summary = summarization_model(text_to_summarize[:1024], max_length=300, min_length=50, do_sample=False)
st.write("Summary:", summary[0]['summary_text'])
st.balloons()
else:
st.error("Please enter text or upload a document for summarization.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Question Answering":
st.title("Question Answering")
st.markdown("- because Google wasn't enough 😉
", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) for context (optional)", type=["pdf", "docx", "txt"])
context_input = st.text_area("Enter context (or leave empty if uploading a file):")
question = st.text_input("Enter your question:")
if uploaded_file:
file_type = uploaded_file.name.split(".")[-1].lower()
context_input = extract_text_from_file(uploaded_file, file_type)
if st.button("Get Answer"):
with st.spinner('Finding answer...'):
try:
if context_input and question:
answer = qa_model(question=question, context=context_input)
st.write("Answer:", answer['answer'])
st.balloons()
else:
st.error("Please enter both context and a question.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Text Classification":
st.title("Text Classification")
st.markdown("- where machines learn to hate spam as much as we do 😅
", unsafe_allow_html=True)
text = st.text_area("Enter text for classification:")
if st.button("Classify Text"):
with st.spinner('Classifying text...'):
try:
classification = classification_model(text)
st.json(classification)
st.balloons()
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Language Translation":
st.title("Language Translation (English to Multiple Languages)")
st.markdown("- when 'translate' is the only button you know 😁
", unsafe_allow_html=True)
target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
language_models = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"German": "Helsinki-NLP/opus-mt-en-de",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
"Hindi": "Helsinki-NLP/opus-mt-en-hi"
}
selected_model = language_models.get(target_language)
translation_pipeline = pipeline("translation", model=selected_model)
text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
if st.button("Translate"):
with st.spinner('Translating...'):
try:
if text_to_translate:
translated_text = translation_pipeline(text_to_translate)
st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
st.balloons()
else:
st.error("Please enter text to translate.")
except Exception as e:
st.error(f"An error occurred: {e}")