from math import log from loguru import logger import torch import torch.nn.functional as F from einops import repeat from kornia.utils import create_meshgrid from einops.einops import rearrange from .geometry import warp_kpts, warp_kpts_fine from kornia.geometry.epipolar import fundamental_from_projections, normalize_transformation ############## ↓ Coarse-Level supervision ↓ ############## @torch.no_grad() def mask_pts_at_padded_regions(grid_pt, mask): """For megadepth dataset, zero-padding exists in images""" mask = repeat(mask, 'n h w -> n (h w) c', c=2) grid_pt[~mask.bool()] = 0 return grid_pt @torch.no_grad() def spvs_coarse(data, config): """ Update: data (dict): { "conf_matrix_gt": [N, hw0, hw1], 'spv_b_ids': [M] 'spv_i_ids': [M] 'spv_j_ids': [M] 'spv_w_pt0_i': [N, hw0, 2], in original image resolution 'spv_pt1_i': [N, hw1, 2], in original image resolution } NOTE: - for scannet dataset, there're 3 kinds of resolution {i, c, f} - for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f} """ # 1. misc device = data['image0'].device N, _, H0, W0 = data['image0'].shape _, _, H1, W1 = data['image1'].shape scale = config['XOFTR']['RESOLUTION'][0] scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) # 2. warp grids # create kpts in meshgrid and resize them to image resolution grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2] grid_pt0_i = scale0 * grid_pt0_c grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1) grid_pt1_i = scale1 * grid_pt1_c # mask padded region to (0, 0), so no need to manually mask conf_matrix_gt if 'mask0' in data: grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0']) grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1']) # warp kpts bi-directionally and resize them to coarse-level resolution # (unhandled edge case: points with 0-depth will be warped to the left-up corner) valid_mask0, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1']) valid_mask1, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0']) w_pt0_i[~valid_mask0] = 0 w_pt1_i[~valid_mask1] = 0 w_pt0_c = w_pt0_i / scale1 w_pt1_c = w_pt1_i / scale0 # 3. nearest neighbor w_pt0_c_round = w_pt0_c[:, :, :].round().long() nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1 w_pt1_c_round = w_pt1_c[:, :, :].round().long() nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0 # corner case: out of boundary def out_bound_mask(pt, w, h): return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0 nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0 arange_1 = torch.arange(h0*w0, device=device)[None].repeat(N, 1) arange_0 = torch.arange(h0*w0, device=device)[None].repeat(N, 1) arange_1[nearest_index1 == 0] = 0 arange_0[nearest_index0 == 0] = 0 arange_b = torch.arange(N, device=device).unsqueeze(1) # 4. construct a gt conf_matrix conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device) conf_matrix_gt[arange_b, arange_1, nearest_index1] = 1 conf_matrix_gt[arange_b, nearest_index0, arange_0] = 1 conf_matrix_gt[:, 0, 0] = False b_ids, i_ids, j_ids = conf_matrix_gt.nonzero(as_tuple=True) data.update({'conf_matrix_gt': conf_matrix_gt}) # 5. save coarse matches(gt) for training fine level if len(b_ids) == 0: logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}") # this won't affect fine-level loss calculation b_ids = torch.tensor([0], device=device) i_ids = torch.tensor([0], device=device) j_ids = torch.tensor([0], device=device) data.update({ 'spv_b_ids': b_ids, 'spv_i_ids': i_ids, 'spv_j_ids': j_ids }) # 6. save intermediate results (for fast fine-level computation) data.update({ 'spv_w_pt0_i': w_pt0_i, 'spv_pt1_i': grid_pt1_i }) def compute_supervision_coarse(data, config): assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!" data_source = data['dataset_name'][0] if data_source.lower() in ['scannet', 'megadepth']: spvs_coarse(data, config) else: raise ValueError(f'Unknown data source: {data_source}') ############## ↓ Fine-Level supervision ↓ ############## def compute_supervision_fine(data, config): data_source = data['dataset_name'][0] if data_source.lower() in ['scannet', 'megadepth']: spvs_fine(data, config) else: raise NotImplementedError @torch.no_grad() def create_2d_gaussian_kernel(kernel_size, sigma, device): """ Create a 2D Gaussian kernel. Args: kernel_size (int): Size of the kernel (both width and height). sigma (float): Standard deviation of the Gaussian distribution. Returns: torch.Tensor: 2D Gaussian kernel. """ kernel = torch.arange(kernel_size, dtype=torch.float32, device=device) - (kernel_size - 1) / 2 kernel = torch.exp(-kernel**2 / (2 * sigma**2)) kernel = kernel / kernel.sum() # Outer product to get a 2D kernel kernel = torch.outer(kernel, kernel) return kernel @torch.no_grad() def create_conf_prob(points, h0, w0, h1, w1, kernel_size = 5, sigma=1): """ Place a gaussian kernel in sim matrix for warped points Args: data (dict): { points: (torch.Tensor): (N, L, 2), warped rounded key points h0, w0, h1, w1: (int), windows sizes kernel_size: (int), kernel size for the gaussian sigma: (float), sigma value for gaussian } """ B = points.shape[0] impulses = torch.zeros(B, h0 * w0, h1, w1, device=points.device) # Extract the row and column indices row_indices = points[:, :, 1] col_indices = points[:, :, 0] # Set the corresponding locations in the target tensor to 1 impulses[torch.arange(B, device=points.device).view(B, 1, 1), torch.arange(h0 * w0, device=points.device).view(1, h0 * w0, 1), row_indices.unsqueeze(-1), col_indices.unsqueeze(-1)] = 1 # mask 0,0 point impulses[:,:,0,0] = 0 # Create the Gaussian kernel gaussian_kernel = create_2d_gaussian_kernel(kernel_size, sigma=sigma, device=points.device) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) # Create distributions at the points conf_prob = F.conv2d(impulses.view(-1,1,h1,w1), gaussian_kernel, padding=kernel_size//2).view(-1, h0*w0, h1*w1) return conf_prob @torch.no_grad() def spvs_fine(data, config): """ Args: data (dict): { 'b_ids': [M] 'i_ids': [M] 'j_ids': [M] } Update: data (dict): { conf_matrix_f_gt: [N, W_f^2, W_f^2], in original image resolution } """ # 1. misc device = data['image0'].device N, _, H0, W0 = data['image0'].shape _, _, H1, W1 = data['image1'].shape scale = config['XOFTR']['RESOLUTION'][1] scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) scale_f_c = config['XOFTR']['RESOLUTION'][0] // config['XOFTR']['RESOLUTION'][1] W_f = config['XOFTR']['FINE_WINDOW_SIZE'] # 2. get coarse prediction b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids'] if len(b_ids) == 0: data.update({"conf_matrix_f_gt": torch.zeros(1,W_f*W_f,W_f*W_f, device=device)}) return # 2. warp grids # create kpts in meshgrid and resize them to image resolution grid_pt0_c = create_meshgrid(h0, w0, False, device).repeat(N, 1, 1, 1)#.reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2] grid_pt0_i = scale0[:,None,...] * grid_pt0_c grid_pt1_c = create_meshgrid(h1, w1, False, device).repeat(N, 1, 1, 1)#.reshape(1, h1*w1, 2).repeat(N, 1, 1) grid_pt1_i = scale1[:,None,...] * grid_pt1_c # unfold (crop windows) all local windows stride_f = data['hw0_f'][0] // data['hw0_c'][0] grid_pt0_i = rearrange(grid_pt0_i, 'n h w c -> n c h w') grid_pt0_i = F.unfold(grid_pt0_i, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2) grid_pt0_i = rearrange(grid_pt0_i, 'n (c ww) l -> n l ww c', ww=W_f**2) grid_pt0_i = grid_pt0_i[b_ids, i_ids] grid_pt1_i = rearrange(grid_pt1_i, 'n h w c -> n c h w') grid_pt1_i = F.unfold(grid_pt1_i, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2) grid_pt1_i = rearrange(grid_pt1_i, 'n (c ww) l -> n l ww c', ww=W_f**2) grid_pt1_i = grid_pt1_i[b_ids, j_ids] # warp kpts bi-directionally and resize them to fine-level resolution # (no depth consistency check # (unhandled edge case: points with 0-depth will be warped to the left-up corner) _, w_pt0_i = warp_kpts_fine(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'], b_ids) _, w_pt1_i = warp_kpts_fine(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'], b_ids) w_pt0_f = w_pt0_i / scale1[b_ids] w_pt1_f = w_pt1_i / scale0[b_ids] mkpts0_c_scaled_to_f = torch.stack( [i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]], dim=1) * scale_f_c - W_f//2 mkpts1_c_scaled_to_f = torch.stack( [j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]], dim=1) * scale_f_c - W_f//2 w_pt0_f = w_pt0_f - mkpts1_c_scaled_to_f[:,None,:] w_pt1_f = w_pt1_f - mkpts0_c_scaled_to_f[:,None,:] # 3. check if mutual nearest neighbor w_pt0_f_round = w_pt0_f[:, :, :].round().long() w_pt1_f_round = w_pt1_f[:, :, :].round().long() M = w_pt0_f.shape[0] nearest_index1 = w_pt0_f_round[..., 0] + w_pt0_f_round[..., 1] * W_f nearest_index0 = w_pt1_f_round[..., 0] + w_pt1_f_round[..., 1] * W_f # corner case: out of boundary def out_bound_mask(pt, w, h): return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) nearest_index1[out_bound_mask(w_pt0_f_round, W_f, W_f)] = 0 nearest_index0[out_bound_mask(w_pt1_f_round, W_f, W_f)] = 0 loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0) correct_0to1 = loop_back == torch.arange(W_f*W_f, device=device)[None].repeat(M, 1) correct_0to1[:, 0] = False # ignore the top-left corner # 4. construct a gt conf_matrix conf_matrix_f_gt = torch.zeros(M, W_f*W_f, W_f*W_f, device=device) b_ids, i_ids = torch.where(correct_0to1 != 0) j_ids = nearest_index1[b_ids, i_ids] conf_matrix_f_gt[b_ids, i_ids, j_ids] = 1 data.update({"conf_matrix_f_gt": conf_matrix_f_gt})