Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -1,134 +1,137 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
If you want to use
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
- [x]
|
127 |
-
- [x]
|
128 |
-
- [x]
|
129 |
-
- [x]
|
130 |
-
- [
|
131 |
-
- [
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
sdk: gradio
|
3 |
+
---
|
4 |
+
# Whisper-WebUI
|
5 |
+
A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper). You can use it as an Easy Subtitle Generator!
|
6 |
+
|
7 |
+

|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
## Notebook
|
12 |
+
If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)!
|
13 |
+
|
14 |
+
# Feature
|
15 |
+
- Select the Whisper implementation you want to use between :
|
16 |
+
- [openai/whisper](https://github.com/openai/whisper)
|
17 |
+
- [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default)
|
18 |
+
- [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
|
19 |
+
- Generate subtitles from various sources, including :
|
20 |
+
- Files
|
21 |
+
- Youtube
|
22 |
+
- Microphone
|
23 |
+
- Currently supported subtitle formats :
|
24 |
+
- SRT
|
25 |
+
- WebVTT
|
26 |
+
- txt ( only text file without timeline )
|
27 |
+
- Speech to Text Translation
|
28 |
+
- From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature )
|
29 |
+
- Text to Text Translation
|
30 |
+
- Translate subtitle files using Facebook NLLB models
|
31 |
+
- Translate subtitle files using DeepL API
|
32 |
+
- Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad).
|
33 |
+
- Pre-processing audio input to separate BGM with [UVR](https://github.com/Anjok07/ultimatevocalremovergui).
|
34 |
+
- Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model.
|
35 |
+
- To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below.
|
36 |
+
1. https://huggingface.co/pyannote/speaker-diarization-3.1
|
37 |
+
2. https://huggingface.co/pyannote/segmentation-3.0
|
38 |
+
|
39 |
+
### Pipeline Diagram
|
40 |
+

|
41 |
+
|
42 |
+
# Installation and Running
|
43 |
+
|
44 |
+
- ## Running with Pinokio
|
45 |
+
|
46 |
+
The app is able to run with [Pinokio](https://github.com/pinokiocomputer/pinokio).
|
47 |
+
|
48 |
+
1. Install [Pinokio Software](https://program.pinokio.computer/#/?id=install).
|
49 |
+
2. Open the software and search for Whisper-WebUI and install it.
|
50 |
+
3. Start the Whisper-WebUI and connect to the `http://localhost:7860`.
|
51 |
+
|
52 |
+
- ## Running with Docker
|
53 |
+
|
54 |
+
1. Install and launch [Docker-Desktop](https://www.docker.com/products/docker-desktop/).
|
55 |
+
|
56 |
+
2. Git clone the repository
|
57 |
+
|
58 |
+
```sh
|
59 |
+
git clone https://github.com/jhj0517/Whisper-WebUI.git
|
60 |
+
```
|
61 |
+
|
62 |
+
3. Build the image ( Image is about 7GB~ )
|
63 |
+
|
64 |
+
```sh
|
65 |
+
docker compose build
|
66 |
+
```
|
67 |
+
|
68 |
+
4. Run the container
|
69 |
+
|
70 |
+
```sh
|
71 |
+
docker compose up
|
72 |
+
```
|
73 |
+
|
74 |
+
5. Connect to the WebUI with your browser at `http://localhost:7860`
|
75 |
+
|
76 |
+
If needed, update the [`docker-compose.yaml`](https://github.com/jhj0517/Whisper-WebUI/blob/master/docker-compose.yaml) to match your environment.
|
77 |
+
|
78 |
+
- ## Run Locally
|
79 |
+
|
80 |
+
### Prerequisite
|
81 |
+
To run this WebUI, you need to have `git`, `3.10 <= python <= 3.12`, `FFmpeg`. <br>
|
82 |
+
And if you're not using an Nvida GPU, or using a different `CUDA` version than 12.4, edit the [`requirements.txt`](https://github.com/jhj0517/Whisper-WebUI/blob/master/requirements.txt) to match your environment.
|
83 |
+
|
84 |
+
Please follow the links below to install the necessary software:
|
85 |
+
- git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
|
86 |
+
- python : [https://www.python.org/downloads/](https://www.python.org/downloads/) **`3.10 ~ 3.12` is recommended.**
|
87 |
+
- FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
|
88 |
+
- CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
|
89 |
+
|
90 |
+
After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**
|
91 |
+
|
92 |
+
### Installation Using the Script Files
|
93 |
+
|
94 |
+
1. git clone this repository
|
95 |
+
```shell
|
96 |
+
git clone https://github.com/jhj0517/Whisper-WebUI.git
|
97 |
+
```
|
98 |
+
2. Run `install.bat` or `install.sh` to install dependencies. (It will create a `venv` directory and install dependencies there.)
|
99 |
+
3. Start WebUI with `start-webui.bat` or `start-webui.sh` (It will run `python app.py` after activating the venv)
|
100 |
+
|
101 |
+
And you can also run the project with command line arguments if you like to, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments.
|
102 |
+
|
103 |
+
# VRAM Usages
|
104 |
+
This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.
|
105 |
+
|
106 |
+
According to faster-whisper, the efficiency of the optimized whisper model is as follows:
|
107 |
+
| Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
|
108 |
+
|-------------------|-----------|-----------|-------|-----------------|-----------------|
|
109 |
+
| openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
|
110 |
+
| faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
|
111 |
+
|
112 |
+
If you want to use an implementation other than faster-whisper, use `--whisper_type` arg and the repository name.<br>
|
113 |
+
Read [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more info about CLI args.
|
114 |
+
|
115 |
+
If you want to use a fine-tuned model, manually place the models in `models/Whisper/` corresponding to the implementation.
|
116 |
+
|
117 |
+
Alternatively, if you enter the huggingface repo id (e.g, [deepdml/faster-whisper-large-v3-turbo-ct2](https://huggingface.co/deepdml/faster-whisper-large-v3-turbo-ct2)) in the "Model" dropdown, it will be automatically downloaded in the directory.
|
118 |
+
|
119 |
+

|
120 |
+
|
121 |
+
# REST API
|
122 |
+
If you're interested in deploying this app as a REST API, please check out [/backend](https://github.com/jhj0517/Whisper-WebUI/tree/master/backend).
|
123 |
+
|
124 |
+
## TODO🗓
|
125 |
+
|
126 |
+
- [x] Add DeepL API translation
|
127 |
+
- [x] Add NLLB Model translation
|
128 |
+
- [x] Integrate with faster-whisper
|
129 |
+
- [x] Integrate with insanely-fast-whisper
|
130 |
+
- [x] Integrate with whisperX ( Only speaker diarization part )
|
131 |
+
- [x] Add background music separation pre-processing with [UVR](https://github.com/Anjok07/ultimatevocalremovergui)
|
132 |
+
- [x] Add fast api script
|
133 |
+
- [ ] Add CLI usages
|
134 |
+
- [ ] Support real-time transcription for microphone
|
135 |
+
|
136 |
+
### Translation 🌐
|
137 |
+
Any PRs that translate the language into [translation.yaml](https://github.com/jhj0517/Whisper-WebUI/blob/master/configs/translation.yaml) would be greatly appreciated!
|