Spaces:
Running
Running
from modules.whisper.whisper_factory import WhisperFactory | |
from modules.whisper.data_classes import * | |
from modules.utils.subtitle_manager import read_file | |
from modules.utils.paths import WEBUI_DIR | |
from test_config import * | |
import requests | |
import pytest | |
import gradio as gr | |
import os | |
def test_transcribe( | |
whisper_type: str, | |
vad_filter: bool, | |
bgm_separation: bool, | |
diarization: bool, | |
): | |
audio_path = TEST_FILE_PATH | |
answer = TEST_ANSWER | |
if diarization: | |
answer = "SPEAKER_00|"+TEST_ANSWER | |
whisper_inferencer = WhisperFactory.create_whisper_inference( | |
whisper_type=whisper_type, | |
) | |
print( | |
f"""Whisper Device : {whisper_inferencer.device}\n""" | |
f"""BGM Separation Device: {whisper_inferencer.music_separator.device}\n""" | |
f"""Diarization Device: {whisper_inferencer.diarizer.device}""" | |
) | |
hparams = TranscriptionPipelineParams( | |
whisper=WhisperParams( | |
model_size=TEST_WHISPER_MODEL, | |
compute_type=whisper_inferencer.current_compute_type | |
), | |
vad=VadParams( | |
vad_filter=vad_filter | |
), | |
bgm_separation=BGMSeparationParams( | |
is_separate_bgm=bgm_separation, | |
enable_offload=True | |
), | |
diarization=DiarizationParams( | |
is_diarize=diarization | |
), | |
).to_list() | |
subtitle_str, file_paths = whisper_inferencer.transcribe_file( | |
[audio_path], | |
None, | |
None, | |
None, | |
"SRT", | |
False, | |
gr.Progress(), | |
*hparams, | |
) | |
subtitle = read_file(file_paths[0]).split("\n") | |
assert calculate_wer(answer, subtitle[2].strip().replace(",", "").replace(".", "")) < 0.1 | |
if not is_pytube_detected_bot(): | |
subtitle_str, file_path = whisper_inferencer.transcribe_youtube( | |
TEST_YOUTUBE_URL, | |
"SRT", | |
False, | |
gr.Progress(), | |
*hparams, | |
) | |
assert isinstance(subtitle_str, str) and subtitle_str | |
assert os.path.exists(file_path) | |
subtitle_str, file_path = whisper_inferencer.transcribe_mic( | |
audio_path, | |
"SRT", | |
False, | |
gr.Progress(), | |
*hparams, | |
) | |
subtitle = read_file(file_path).split("\n") | |
wer = calculate_wer(answer, subtitle[2].strip().replace(",", "").replace(".", "")) | |
assert wer < 0.1, f"WER is too high, it's {wer}" | |