Whisper-WebUI / backend /tests /test_backend_bgm_separation.py
soiz1's picture
Upload 109 files
9aaf513 verified
import pytest
from fastapi import UploadFile
from io import BytesIO
import os
import torch
from backend.db.task.models import TaskStatus
from backend.tests.test_task_status import wait_for_task_completion, fetch_file_response
from backend.tests.test_backend_config import (
get_client, setup_test_file, get_upload_file_instance, calculate_wer,
TEST_BGM_SEPARATION_PARAMS, TEST_ANSWER, TEST_BGM_SEPARATION_OUTPUT_PATH
)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip the test because CUDA is not available")
@pytest.mark.parametrize(
"bgm_separation_params",
[
TEST_BGM_SEPARATION_PARAMS
]
)
def test_transcription_endpoint(
get_upload_file_instance,
bgm_separation_params: dict
):
client = get_client()
file_content = BytesIO(get_upload_file_instance.file.read())
get_upload_file_instance.file.seek(0)
response = client.post(
"/bgm-separation",
files={"file": (get_upload_file_instance.filename, file_content, "audio/mpeg")},
params=bgm_separation_params
)
assert response.status_code == 201
assert response.json()["status"] == TaskStatus.QUEUED
task_identifier = response.json()["identifier"]
assert isinstance(task_identifier, str) and task_identifier
completed_task = wait_for_task_completion(
identifier=task_identifier
)
assert completed_task is not None, f"Task with identifier {task_identifier} did not complete within the " \
f"expected time."
result = completed_task.json()["result"]
assert "instrumental_hash" in result and result["instrumental_hash"]
assert "vocal_hash" in result and result["vocal_hash"]
file_response = fetch_file_response(task_identifier)
assert file_response.status_code == 200, f"Fetching File Response has failed. Response is: {file_response}"
with open(TEST_BGM_SEPARATION_OUTPUT_PATH, "wb") as file:
file.write(file_response.content)
assert os.path.exists(TEST_BGM_SEPARATION_OUTPUT_PATH)