File size: 4,549 Bytes
9aaf513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import whisper
import gradio as gr
import time
from typing import BinaryIO, Union, Tuple, List
import numpy as np
import torch
import os
from argparse import Namespace

from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, UVR_MODELS_DIR)
from modules.whisper.base_transcription_pipeline import BaseTranscriptionPipeline
from modules.whisper.data_classes import *


class WhisperInference(BaseTranscriptionPipeline):
    def __init__(self,

                 model_dir: str = WHISPER_MODELS_DIR,

                 diarization_model_dir: str = DIARIZATION_MODELS_DIR,

                 uvr_model_dir: str = UVR_MODELS_DIR,

                 output_dir: str = OUTPUT_DIR,

                 ):
        super().__init__(
            model_dir=model_dir,
            output_dir=output_dir,
            diarization_model_dir=diarization_model_dir,
            uvr_model_dir=uvr_model_dir
        )

    def transcribe(self,

                   audio: Union[str, np.ndarray, torch.Tensor],

                   progress: gr.Progress = gr.Progress(),

                   *whisper_params,

                   ) -> Tuple[List[Segment], float]:
        """

        transcribe method for faster-whisper.



        Parameters

        ----------

        audio: Union[str, BinaryIO, np.ndarray]

            Audio path or file binary or Audio numpy array

        progress: gr.Progress

            Indicator to show progress directly in gradio.

        *whisper_params: tuple

            Parameters related with whisper. This will be dealt with "WhisperParameters" data class



        Returns

        ----------

        segments_result: List[Segment]

            list of Segment that includes start, end timestamps and transcribed text

        elapsed_time: float

            elapsed time for transcription

        """
        start_time = time.time()
        params = WhisperParams.from_list(list(whisper_params))

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        result = self.model.transcribe(audio=audio,
                                       language=params.lang,
                                       verbose=False,
                                       beam_size=params.beam_size,
                                       logprob_threshold=params.log_prob_threshold,
                                       no_speech_threshold=params.no_speech_threshold,
                                       task="translate" if params.is_translate else "transcribe",
                                       fp16=True if params.compute_type == "float16" else False,
                                       best_of=params.best_of,
                                       patience=params.patience,
                                       temperature=params.temperature,
                                       compression_ratio_threshold=params.compression_ratio_threshold,
                                       progress_callback=progress_callback,)["segments"]
        segments_result = []
        for segment in result:
            segments_result.append(Segment(
                start=segment["start"],
                end=segment["end"],
                text=segment["text"]
            ))

        elapsed_time = time.time() - start_time
        return segments_result, elapsed_time

    def update_model(self,

                     model_size: str,

                     compute_type: str,

                     progress: gr.Progress = gr.Progress(),

                     ):
        """

        Update current model setting



        Parameters

        ----------

        model_size: str

            Size of whisper model

        compute_type: str

            Compute type for transcription.

            see more info : https://opennmt.net/CTranslate2/quantization.html

        progress: gr.Progress

            Indicator to show progress directly in gradio.

        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )