# Copyright 2024 LY Corporation # LY Corporation licenses this file to you under the Apache License, # version 2.0 (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at: # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from pathlib import Path import hydra import numpy as np import pandas as pd import torch import torchaudio from hydra.utils import instantiate from joblib import Parallel, delayed from omegaconf import DictConfig, OmegaConf from promptttspp.utils.joblib import tqdm_joblib @hydra.main(version_base=None, config_path="conf/", config_name="preprocess") def main(cfg: DictConfig): data_root = Path(cfg.path.data_root) mel_dir = Path(cfg.path.mel_dir) if (mel_dir / "finish").exists(): print("Already finished") return df = pd.read_csv(cfg.path.data_file) # NOTE: use cpu for multi-processing device = torch.device("cpu") to_mel = instantiate(cfg.transforms).to(device) def process(row): spk_id, utt_id = row["spk_id"], row["item_name"] wav_path = data_root / f"{spk_id}/wav24k/{utt_id}.wav" wav, _ = torchaudio.load(wav_path) wav = wav.to(device) mel = to_mel(wav).squeeze().cpu() spk_dir = mel_dir / f"{spk_id}" spk_dir.mkdir(parents=True, exist_ok=True) np.save(spk_dir / f"{utt_id}.npy", mel.numpy()) return mel with tqdm_joblib(len(df)): mels = Parallel(n_jobs=cfg.n_jobs)( delayed(process)(df.iloc[idx]) for idx in range(len(df)) ) mels = torch.cat(mels, dim=1) stats = { "min": float(mels.min()), "max": float(mels.max()), "mean": float(mels.mean()), "std": float(mels.std()), "var": float(mels.var()), } conf = OmegaConf.create(stats) OmegaConf.save(conf, mel_dir / "stats.yaml") with open(mel_dir / "finish", "w") as f: f.write("finish") if __name__ == "__main__": main()