File size: 7,436 Bytes
82334b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2024 LY Corporation

# LY Corporation licenses this file to you under the Apache License,
# version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at:

#   https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

from pathlib import Path

import hydra
import pandas as pd
import torch
import torchaudio
from hydra.utils import instantiate
from omegaconf import OmegaConf
from promptttspp.utils import seed_everything
from promptttspp.utils.model import remove_weight_norm_
from promptttspp.vocoders import F0AwareBigVGAN
from scipy import signal
from tqdm import tqdm


def lowpass_filter(x, fs=100, cutoff=20, N=5):
    """Lowpass filter

    Args:
        x (array): input signal
        fs (int): sampling rate
        cutoff (int): cutoff frequency

    Returns:
        array: filtered signal
    """
    nyquist = fs // 2
    norm_cutoff = cutoff / nyquist
    Wn = [norm_cutoff]

    x_len = x.shape[-1]

    b, a = signal.butter(N, Wn, "lowpass")
    if x_len <= max(len(a), len(b)) * (N // 2 + 1):
        # NOTE: input signal is too short
        return x

    # NOTE: use zero-phase filter
    if isinstance(x, torch.Tensor):
        from torchaudio.functional import filtfilt

        a = torch.from_numpy(a).float().to(x.device)
        b = torch.from_numpy(b).float().to(x.device)
        y = filtfilt(x, a, b, clamp=False)
    else:
        y = signal.filtfilt(b, a, x)

    return y


def read_prompt_candidate(filepath):
    df_style_prompt = pd.read_csv(
        filepath, header=None, sep="|", names=["style_key", "prompt"]
    )
    style_prompt_dict = {}
    for _, row in df_style_prompt.iterrows():
        style_key, style_prompt = row.iloc[0], row.iloc[1]
        assert isinstance(style_prompt, str)
        style_prompt_dict[style_key] = list(
            map(lambda s: s.lower().strip(), style_prompt.split(";"))
        )
    return style_prompt_dict


def read_spk_prompt_candidate(filepath):
    df = pd.read_csv(filepath, sep="|", header=None, names=["spk", "words"])
    df["words"] = df["words"].map(lambda x: x.split(","))
    # dict(key: spk_id, value: words)
    spk_prompt_cand_dict = df.set_index("spk")["words"].to_dict()
    return spk_prompt_cand_dict


def add_spk_prompt(style_prompt, words):
    spk_prompt = f"The speaker identity can be described as {words}."
    prompt = f"{style_prompt}. {spk_prompt}"
    return prompt


@hydra.main(version_base=None, config_path="conf/", config_name="synthesize")
def main(cfg):
    data_root = Path(cfg.path.data_root)
    output_dir = Path(cfg.output_dir)

    seed_everything(cfg.train.seed)

    prompt_candidate = read_prompt_candidate(cfg.path.prompt_candidate_file)
    spk_prompt_candidate = read_spk_prompt_candidate(cfg.path.spk_prompt_candidate_file)
    mel_stats = OmegaConf.load(f"{cfg.path.mel_dir}/stats.yaml")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = instantiate(cfg.model)
    model.load_state_dict(torch.load(cfg.ckpt_path, map_location="cpu")["model"])
    model = model.to(device).eval()
    model.apply(remove_weight_norm_)
    to_mel = instantiate(cfg.transforms).to(device).eval()

    vocoder = instantiate(cfg.vocoder)
    vocoder.load_state_dict(
        torch.load(cfg.vocoder_ckpt_path, map_location="cpu")["generator"]
    )
    vocoder = vocoder.to(device).eval()
    vocoder.apply(remove_weight_norm_)

    use_col = [
        "spk_id",
        "item_name",
        "gender",
        "pitch",
        "speaking_speed",
        "energy",
        "style_prompt",
        "style_prompt_key",
        "seq",
    ]
    df = pd.read_csv(cfg.label_file, usecols=use_col)
    data = df[use_col].values.tolist()

    for row in tqdm(data, total=len(data)):
        spk = row[0]
        utt_id = row[1]
        seq = row[-1]
        style_prompt_key = row[-2]
        style_prompt = prompt_candidate[style_prompt_key][0]
        if spk in spk_prompt_candidate:
            spk_prompt = spk_prompt_candidate[spk]
            words = ", ".join(spk_prompt)
            if cfg.use_spk_prompt:
                prompt = add_spk_prompt(style_prompt, words)
            else:
                prompt = style_prompt
        else:
            prompt = style_prompt

        spk_dir = output_dir / str(spk)

        ref_dir = spk_dir / "ref"
        ref_mel_dir = ref_dir / "mel"
        ref_plot_dir = ref_dir / "plot"
        ref_wav_dir = ref_dir / "wav"

        prompt_dir = spk_dir / "prompt"
        prompt_mel_dir = prompt_dir / "mel"
        prompt_plot_dir = prompt_dir / "plot"
        prompt_wav_dir = prompt_dir / "wav"

        dirs = [
            ref_mel_dir,
            ref_plot_dir,
            ref_wav_dir,
            prompt_mel_dir,
            prompt_plot_dir,
            prompt_wav_dir,
        ]
        [d.mkdir(parents=True, exist_ok=True) for d in dirs]

        label = torch.LongTensor([int(s) for s in seq.split()])[None, :]
        label = label.to(device)
        wav, _ = torchaudio.load(data_root / f"{spk}/wav24k/{utt_id}.wav")
        wav = wav.to(device)
        mel = to_mel(wav)
        mel = (mel - mel_stats["mean"]) / mel_stats["std"]

        is_f0_aware_vocoder = isinstance(vocoder, F0AwareBigVGAN)
        with torch.no_grad():
            if is_f0_aware_vocoder:
                dec, log_cf0, vuv = model.infer(
                    label, reference_mel=mel, return_f0=True
                )
                # NOTE: hard code for 10ms frame shift
                modfs = int(1.0 / (10 * 0.001))
                log_cf0 = lowpass_filter(log_cf0, modfs, cutoff=20)
                f0 = log_cf0.exp()
                f0[vuv < 0.5] = 0
                dec = dec * mel_stats["std"] + mel_stats["mean"]
                o_ref = vocoder(dec, f0).squeeze(1).cpu()
            else:
                dec = model.infer(label, reference_mel=mel)
                dec = dec * mel_stats["std"] + mel_stats["mean"]
                o_ref = vocoder(dec).squeeze(1).cpu()

        torchaudio.save(ref_wav_dir / f"{utt_id}.wav", o_ref, to_mel.sample_rate)

        with torch.no_grad():
            style_prompt = [prompt]
            if is_f0_aware_vocoder:
                dec, log_cf0, vuv = model.infer(
                    label, style_prompt=style_prompt, return_f0=True
                )
                # NOTE: hard code for 10ms frame shift
                modfs = int(1.0 / (10 * 0.001))
                log_cf0 = lowpass_filter(log_cf0, modfs, cutoff=20)
                f0 = log_cf0.exp()
                f0[vuv < 0.5] = 0
                dec = dec * mel_stats["std"] + mel_stats["mean"]
                o_prompt = vocoder(dec, f0).squeeze(1).cpu()
            else:
                dec = model.infer(label, style_prompt=style_prompt)
                dec = dec * mel_stats["std"] + mel_stats["mean"]
                o_prompt = vocoder(dec).squeeze(1).cpu()
        torchaudio.save(prompt_wav_dir / f"{utt_id}.wav", o_prompt, to_mel.sample_rate)

    with open(output_dir / "finish", "w") as f:
        f.write("finish")


if __name__ == "__main__":
    main()