import time, os, multiprocessing from minivectordb.embedding_model import EmbeddingModel from minivectordb.vector_database import VectorDatabase from text_util_en_pt.cleaner import structurize_text, detect_language, Language from webtextcrawler.webtextcrawler import extract_text_from_url from duckduckgo_search import DDGS import google.generativeai as genai import gradio as gr gemini_key = os.environ.get("GEMINI_KEY") genai.configure(api_key=gemini_key) gemini = genai.GenerativeModel('gemini-pro') model = EmbeddingModel(use_quantized_onnx_model=True) def fetch_links(query, max_results=10): with DDGS() as ddgs: return [r['href'] for r in ddgs.text(keywords=query, max_results=max_results)] def fetch_texts(links): with multiprocessing.Pool(10) as pool: texts = pool.map(extract_text_from_url, links) return '\n'.join([t for t in texts if t]) def index_and_search(query, text): start = time.time() query_embedding = model.extract_embeddings(query) # Indexing vector_db = VectorDatabase() sentences = [ s['sentence'] for s in structurize_text(text)] for idx, sentence in enumerate(sentences): sentence_embedding = model.extract_embeddings(sentence) vector_db.store_embedding(idx + 1, sentence_embedding, {'sentence': sentence}) embedding_time = time.time() - start # Retrieval start = time.time() search_results = vector_db.find_most_similar(query_embedding, k = 30) retrieval_time = time.time() - start return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time def generate_search_terms(message, lang): if lang == Language.ptbr: prompt = f"A partir do texto a seguir, gere alguns termos de pesquisa: \"{message}\"\nSua resposta deve ser apenas o termo de busca mais adequado, e nada mais." else: prompt = f"From the following text, generate some search terms: \"{message}\"\nYour answer should be just the most appropriate search term, and nothing else." response = gemini.generate_content(prompt) return response.text async def predict(message, history): full_response = "" query_language = detect_language(message) start = time.time() full_response += "Generating search terms...\n" yield full_response search_query = generate_search_terms(message, query_language) search_terms_time = time.time() - start full_response += f"Search terms: \"{search_query}\"\n" yield full_response full_response += f"Search terms took: {search_terms_time:.4f} seconds\n" yield full_response start = time.time() full_response += "\nSearching the web...\n" yield full_response links = fetch_links(search_query) websearch_time = time.time() - start full_response += f"Web search took: {websearch_time:.4f} seconds\n" yield full_response full_response += f"Links visited:\n" yield full_response for link in links: full_response += f"{link}\n" yield full_response full_response += "\nExtracting text from web pages...\n" yield full_response start = time.time() text = fetch_texts(links) webcrawl_time = time.time() - start full_response += f"Text extraction took: {webcrawl_time:.4f} seconds\n" full_response += "\nIndexing in vector database and building prompt...\n" yield full_response context, embedding_time, retrieval_time = index_and_search(message, text) if query_language == Language.ptbr: prompt = f"Contexto:\n{context}\n\nResponda: \"{message}\"\n(VocĂȘ pode utilizar o contexto para responder)\n(Sua resposta deve ser completa, detalhada e bem estruturada)" else: prompt = f"Context:\n{context}\n\nAnswer: \"{message}\"\n(You can use the context to answer)\n(Your answer should be complete, detailed and well-structured)" full_response += f"Embedding time: {embedding_time:.4f} seconds\n" full_response += f"Retrieval from VectorDB time: {retrieval_time:.4f} seconds\n" yield full_response full_response += "\nGenerating response...\n" yield full_response full_response += "\nResponse: " streaming_response = gemini.generate_content(prompt, stream=True) for sr in streaming_response: full_response += sr.text yield full_response gr.ChatInterface( predict, title="Web Search with LLM", description="Ask any question, and I will try to answer it using web search", retry_btn=None, undo_btn=None, examples=[ 'When did the first human land on the moon?', 'Liquid vs solid vs gas?', 'What is the capital of France?', 'Why does Brazil has a high tax rate?' ] ).launch()