Spaces:
Runtime error
Runtime error
import time, aiohttp, asyncio, json, os, multiprocessing | |
from minivectordb.embedding_model import EmbeddingModel | |
from minivectordb.vector_database import VectorDatabase | |
from text_util_en_pt.cleaner import structurize_text, detect_language, Language | |
from webtextcrawler.webtextcrawler import extract_text_from_url | |
from duckduckgo_search import DDGS | |
import gradio as gr | |
openrouter_key = os.environ.get("OPENROUTER_KEY") | |
model = EmbeddingModel(use_quantized_onnx_model=False, e5_model_size='small') | |
def fetch_links(query, max_results=10): | |
with DDGS() as ddgs: | |
return [r['href'] for r in ddgs.text(query, max_results=max_results)] | |
def fetch_texts(links): | |
with multiprocessing.Pool() as pool: | |
texts = pool.map(extract_text_from_url, links) | |
return '\n'.join([t for t in texts if t]) | |
def index_and_search(query, text): | |
start = time.time() | |
query_embedding = model.extract_embeddings(query) | |
# Indexing | |
vector_db = VectorDatabase() | |
sentences = [ s['sentence'] for s in structurize_text(text)] | |
for idx, sentence in enumerate(sentences): | |
sentence_embedding = model.extract_embeddings(sentence) | |
vector_db.store_embedding(idx + 1, sentence_embedding, {'sentence': sentence}) | |
embedding_time = time.time() - start | |
# Retrieval | |
start = time.time() | |
search_results = vector_db.find_most_similar(query_embedding, k = 10) | |
retrieval_time = time.time() - start | |
return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time | |
def retrieval_pipeline(query): | |
start = time.time() | |
links = fetch_links(query) | |
websearch_time = time.time() - start | |
start = time.time() | |
text = fetch_texts(links) | |
webcrawl_time = time.time() - start | |
context, embedding_time, retrieval_time = index_and_search(query, text) | |
return context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links | |
async def predict(message, history): | |
context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links = retrieval_pipeline(message) | |
if detect_language(message) == Language.ptbr: | |
prompt = f"Contexto:\n\n{context}\n\nBaseado no contexto, responda: {message}" | |
else: | |
prompt = f"Context:\n\n{context}\n\nBased on the context, answer: {message}" | |
url = "https://openrouter.ai/api/v1/chat/completions" | |
headers = { "Content-Type": "application/json", | |
"Authorization": f"Bearer {openrouter_key}" } | |
body = { "stream": True, | |
"models": [ | |
"mistralai/mistral-7b-instruct:free", | |
"nousresearch/nous-capybara-7b:free" | |
"huggingfaceh4/zephyr-7b-beta:free", | |
"openchat/openchat-7b:free" | |
], | |
"route": "fallback", | |
"max_tokens": 768, | |
"messages": [ | |
{"role": "user", "content": prompt} | |
] } | |
full_response = "" | |
async with aiohttp.ClientSession() as session: | |
async with session.post(url, headers=headers, json=body) as response: | |
buffer = "" # A buffer to hold incomplete lines of SSE data | |
async for chunk in response.content.iter_any(): | |
buffer += chunk.decode() | |
while "\n" in buffer: # Process as long as there are complete lines in the buffer | |
line, buffer = buffer.split("\n", 1) | |
if line.startswith("data: "): | |
event_data = line[len("data: "):] | |
if event_data != '[DONE]': | |
try: | |
current_text = json.loads(event_data)['choices'][0]['delta']['content'] | |
full_response += current_text | |
yield full_response | |
await asyncio.sleep(0.01) | |
except Exception: | |
try: | |
current_text = json.loads(event_data)['choices'][0]['text'] | |
full_response += current_text | |
yield full_response | |
await asyncio.sleep(0.01) | |
except Exception as e: | |
print(e) | |
final_metadata_block = "" | |
final_metadata_block += f"Links visited:\n" | |
for link in links: | |
final_metadata_block += f"{link}\n" | |
final_metadata_block += f"\nWeb search time: {websearch_time:.4f} seconds\n" | |
final_metadata_block += f"\nText extraction: {webcrawl_time:.4f} seconds\n" | |
final_metadata_block += f"\nEmbedding time: {embedding_time:.4f} seconds\n" | |
final_metadata_block += f"\nRetrieval from VectorDB time: {retrieval_time:.4f} seconds" | |
yield f"{full_response}\n\n{final_metadata_block}" | |
# Setting up the Gradio chat interface. | |
gr.ChatInterface( | |
predict, | |
title="AI Web Search", | |
description="Ask any question, and I will try to answer it using web search !", | |
retry_btn=None, | |
undo_btn=None, | |
examples=[ | |
'When did the first human land on the moon?', | |
'Liquid vs solid vs gas ?', | |
'What is the capital of France?', | |
'Why does Brazil has a high tax rate?' | |
] | |
).launch() # Launching the web interface. |