Spaces:
Running
Running
import os | |
import gradio as gr | |
from diffusers import StableVideoDiffusionPipeline | |
import torch | |
# Ensure dependencies are installed | |
os.system("pip install -r requirements.txt") | |
# Model Load (CPU Compatible) | |
model_id = "stabilityai/stable-video-diffusion-img2vid" | |
pipe = StableVideoDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) # Float32 use karo | |
pipe.to("cpu") # Ensure model runs on CPU | |
# Function to Generate Video | |
def generate_video(prompt): | |
video = pipe(prompt, num_inference_steps=30).videos | |
video_path = "generated_video.mp4" | |
video[0].save(video_path) | |
return video_path | |
# Gradio Interface | |
iface = gr.Interface(fn=generate_video, inputs="text", outputs="video") | |
# Launch Gradio Server on Hugging Face Space | |
iface.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860))) | |