Spaces:
Sleeping
Sleeping
File size: 6,385 Bytes
5ef2360 ce1a70a 382a8a5 97f18ea 5ef2360 e0c1694 5ef2360 489ba9a 5ef2360 c24c148 5ef2360 e0c1694 5ef2360 e0c1694 5ef2360 e0c1694 489ba9a e0c1694 489ba9a 5ef2360 489ba9a e0c1694 5ef2360 489ba9a 5ef2360 331d8b7 5ef2360 97f18ea 5ef2360 e0c1694 5ef2360 e0c1694 5ef2360 489ba9a 97f18ea 489ba9a e0c1694 489ba9a 97f18ea 489ba9a e0c1694 489ba9a 5ef2360 437ed2e c1d862e 5ef2360 e0c1694 5ef2360 74081c9 e0c1694 fe3ff14 e0c1694 e523c05 ea07abc 437ed2e 5ef2360 ea07abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import logging
import json
import torch
import asyncio
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
Stream,
AlgoOptions,
SileroVadOptions,
audio_to_bytes,
get_cloudflare_turn_credentials_async,
)
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
)
from transformers.utils import is_flash_attn_2_available
from utils.logger_config import setup_logging
from utils.device import get_device, get_torch_and_np_dtypes
load_dotenv()
setup_logging()
logger = logging.getLogger(__name__)
UI_MODE = os.getenv("UI_MODE", "fastapi").lower() # gradio | fastapi
UI_TYPE = os.getenv("UI_TYPE", "base").lower() # base | screen
APP_MODE = os.getenv("APP_MODE", "local").lower() # local | deployed
MODEL_ID = os.getenv("MODEL_ID", "openai/whisper-large-v3-turbo")
LANGUAGE = os.getenv("LANGUAGE", "english").lower()
device = get_device(force_cpu=False)
torch_dtype, np_dtype = get_torch_and_np_dtypes(device, use_bfloat16=False)
logger.info(f"Using device: {device}, torch_dtype: {torch_dtype}, np_dtype: {np_dtype}")
attention = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"
logger.info(f"Using attention: {attention}")
logger.info(f"Loading Whisper model: {MODEL_ID}")
logger.info(f"Using language: {LANGUAGE}")
try:
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_ID,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation=attention
)
model.to(device)
except Exception as e:
logger.error(f"Error loading ASR model: {e}")
logger.error(f"Are you providing a valid model ID? {MODEL_ID}")
raise
processor = AutoProcessor.from_pretrained(MODEL_ID)
transcribe_pipeline = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
transcribe_pipeline.model = torch.compile(transcribe_pipeline.model, mode="max-autotune")
# Warm up the model with empty audio
logger.info("Warming up Whisper model with dummy input")
warmup_audio = np.zeros((16000,), dtype=np_dtype) # 1s of silence
transcribe_pipeline(warmup_audio)
logger.info("Model warmup complete")
async def transcribe(audio: tuple[int, np.ndarray]):
sample_rate, audio_array = audio
logger.info(f"Sample rate: {sample_rate}Hz, Shape: {audio_array.shape}")
outputs = transcribe_pipeline(
audio_to_bytes(audio),
chunk_length_s=3,
batch_size=2,
generate_kwargs={
'task': 'transcribe',
'language': LANGUAGE,
},
#return_timestamps="word"
)
yield AdditionalOutputs(outputs["text"].strip())
logger.info("Initializing FastRTC stream")
stream = Stream(
handler=ReplyOnPause(
transcribe,
algo_options=AlgoOptions(
# Duration in seconds of audio chunks (default 0.6)
audio_chunk_duration=0.6,
# If the chunk has more than started_talking_threshold seconds of speech, the user started talking (default 0.2)
started_talking_threshold=0.1,
# If, after the user started speaking, there is a chunk with less than speech_threshold seconds of speech, the user stopped speaking. (default 0.1)
speech_threshold=0.1,
),
model_options=SileroVadOptions(
# Threshold for what is considered speech (default 0.5)
threshold=0.5,
# Final speech chunks shorter min_speech_duration_ms are thrown out (default 250)
min_speech_duration_ms=250,
# Max duration of speech chunks, longer will be split at the timestamp of the last silence
# that lasts more than 100ms (if any) or just before max_speech_duration_s (default float('inf'))
max_speech_duration_s=3,
# Wait for ms at the end of each speech chunk before separating it (default 2000)
min_silence_duration_ms=100,
# Chunk size for VAD model. Can be 512, 1024, 1536 for 16k s.r. (default 1024)
window_size_samples=512,
# Final speech chunks are padded by speech_pad_ms each side (default 400)
speech_pad_ms=200,
),
),
# send-receive: bidirectional streaming (default)
# send: client to server only
# receive: server to client only
modality="audio",
mode="send",
additional_outputs=[
gr.Textbox(label="Transcript"),
],
additional_outputs_handler=lambda current, new: current + " " + new,
rtc_configuration=get_cloudflare_turn_credentials_async(hf_token=os.getenv("HF_TOKEN")) if APP_MODE == "deployed" else None,
concurrency_limit=6
)
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
stream.mount(app)
@app.get("/")
async def index():
if UI_TYPE == "base":
html_content = open("static/index.html").read()
elif UI_TYPE == "screen":
html_content = open("static/index-screen.html").read()
rtc_configuration = await get_cloudflare_turn_credentials_async(hf_token=os.getenv("HF_TOKEN")) if APP_MODE == "deployed" else None
logger.info(f"RTC configuration: {rtc_configuration}")
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_configuration))
return HTMLResponse(content=html_content)
@app.get("/transcript")
def _(webrtc_id: str):
logger.debug(f"New transcript stream request for webrtc_id: {webrtc_id}")
async def output_stream():
try:
async for output in stream.output_stream(webrtc_id):
transcript = output.args[0]
logger.debug(f"Sending transcript for {webrtc_id}: {transcript[:50]}...")
yield f"event: output\ndata: {transcript}\n\n"
except Exception as e:
logger.error(f"Error in transcript stream for {webrtc_id}: {str(e)}")
raise
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=7860) |