Spaces:
Runtime error
Runtime error
yjernite
commited on
Commit
·
32115b5
1
Parent(s):
3a47783
single table
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
|
@@ -8,7 +9,7 @@ pd.options.plotting.backend = "plotly"
|
|
8 |
TITLE = "Diffusion Faces Cluster Explorer"
|
9 |
clusters_12 = pd.read_json("clusters/professions_to_clusters_12.json")
|
10 |
clusters_24 = pd.read_json("clusters/professions_to_clusters_24.json")
|
11 |
-
clusters_48 =
|
12 |
|
13 |
clusters_by_size = {
|
14 |
12: clusters_12,
|
@@ -16,6 +17,11 @@ clusters_by_size = {
|
|
16 |
48: clusters_48,
|
17 |
}
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
prompts = pd.read_csv("promptsadjectives.csv")
|
20 |
# m_adjectives = prompts['Masc-adj'].tolist()[:10]
|
21 |
# f_adjectives = prompts['Fem-adj'].tolist()[:10]
|
@@ -31,12 +37,15 @@ models = {
|
|
31 |
|
32 |
df_models = {
|
33 |
"All Models": "All",
|
34 |
-
"Stable Diffusion 1.4"
|
35 |
"Stable Diffusion 2": "SD_2",
|
36 |
"Dall-E 2": "DallE",
|
37 |
}
|
38 |
|
|
|
39 |
def make_profession_plot(num_clusters, prof_name):
|
|
|
|
|
40 |
pre_pandas = dict(
|
41 |
[
|
42 |
(
|
@@ -44,12 +53,12 @@ def make_profession_plot(num_clusters, prof_name):
|
|
44 |
dict(
|
45 |
(
|
46 |
f"Cluster {k}",
|
47 |
-
|
48 |
"cluster_proportions"
|
49 |
][k],
|
50 |
)
|
51 |
for k, v in sorted(
|
52 |
-
|
53 |
"cluster_proportions"
|
54 |
].items(),
|
55 |
key=lambda x: x[1],
|
@@ -65,12 +74,95 @@ def make_profession_plot(num_clusters, prof_name):
|
|
65 |
prof_plot = df.plot(kind="bar", barmode="group")
|
66 |
return prof_plot
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
cl_df = clusters_by_size[num_clusters]
|
70 |
-
clusters_df =
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
74 |
|
75 |
|
76 |
with gr.Blocks() as demo:
|
@@ -86,36 +178,52 @@ with gr.Blocks() as demo:
|
|
86 |
value=12,
|
87 |
label="How many clusters do you want to use to represent identities?",
|
88 |
)
|
89 |
-
model_choices = gr.Dropdown(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
interactive=True,
|
98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
with gr.Row():
|
100 |
table = gr.HTML(
|
101 |
label="Profession assignment per cluster", wrap=True
|
102 |
)
|
103 |
-
with gr.Row():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
make_profession_table,
|
109 |
-
[num_clusters, profession_choices_1,model_choices],
|
110 |
-
[table, labor_table],
|
111 |
-
queue=False,
|
112 |
-
)
|
113 |
-
demo.load(
|
114 |
make_profession_table,
|
115 |
-
[num_clusters,
|
116 |
-
|
117 |
queue=False,
|
118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# with gr.Accordion("Tag Frequencies", open=False):
|
121 |
|
@@ -128,26 +236,21 @@ with gr.Blocks() as demo:
|
|
128 |
)
|
129 |
with gr.Row():
|
130 |
with gr.Column():
|
131 |
-
|
132 |
-
choices=professions,
|
|
|
|
|
133 |
)
|
134 |
-
|
135 |
-
# profession_choice.change(
|
136 |
-
# make_profession_table,
|
137 |
-
# [num_clusters, profession_choices_1,model_choices],
|
138 |
-
# [table, labor_table],
|
139 |
-
# queue=False,
|
140 |
-
# )
|
141 |
with gr.Column():
|
142 |
plot = gr.Plot(
|
143 |
-
label=f"Makeup of the cluster assignments for profession {
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
-
#profession_choice.change(
|
146 |
-
# make_profession_plot,
|
147 |
-
# [num_clusters, profession_choice],
|
148 |
-
# plot,
|
149 |
-
# queue=False,
|
150 |
-
# )
|
151 |
with gr.Row():
|
152 |
gr.Markdown("TODO: show examplars for cluster")
|
153 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
|
|
9 |
TITLE = "Diffusion Faces Cluster Explorer"
|
10 |
clusters_12 = pd.read_json("clusters/professions_to_clusters_12.json")
|
11 |
clusters_24 = pd.read_json("clusters/professions_to_clusters_24.json")
|
12 |
+
clusters_48 = pd.read_json("clusters/professions_to_clusters_48.json")
|
13 |
|
14 |
clusters_by_size = {
|
15 |
12: clusters_12,
|
|
|
17 |
48: clusters_48,
|
18 |
}
|
19 |
|
20 |
+
clusters_dicts = dict(
|
21 |
+
(num_cl, json.load(open(f"clusters/professions_to_clusters_{num_cl}.json")))
|
22 |
+
for num_cl in [12, 24, 48]
|
23 |
+
)
|
24 |
+
|
25 |
prompts = pd.read_csv("promptsadjectives.csv")
|
26 |
# m_adjectives = prompts['Masc-adj'].tolist()[:10]
|
27 |
# f_adjectives = prompts['Fem-adj'].tolist()[:10]
|
|
|
37 |
|
38 |
df_models = {
|
39 |
"All Models": "All",
|
40 |
+
"Stable Diffusion 1.4": "SD_14",
|
41 |
"Stable Diffusion 2": "SD_2",
|
42 |
"Dall-E 2": "DallE",
|
43 |
}
|
44 |
|
45 |
+
|
46 |
def make_profession_plot(num_clusters, prof_name):
|
47 |
+
print("-------------")
|
48 |
+
print(num_clusters, prof_name)
|
49 |
pre_pandas = dict(
|
50 |
[
|
51 |
(
|
|
|
53 |
dict(
|
54 |
(
|
55 |
f"Cluster {k}",
|
56 |
+
clusters_dicts[num_clusters][mod_name][prof_name][
|
57 |
"cluster_proportions"
|
58 |
][k],
|
59 |
)
|
60 |
for k, v in sorted(
|
61 |
+
clusters_dicts[num_clusters]["All"][prof_name][
|
62 |
"cluster_proportions"
|
63 |
].items(),
|
64 |
key=lambda x: x[1],
|
|
|
74 |
prof_plot = df.plot(kind="bar", barmode="group")
|
75 |
return prof_plot
|
76 |
|
77 |
+
|
78 |
+
def make_profession_table(num_clusters, prof_names, mod_name, max_cols=8):
|
79 |
+
professions_list_clusters = [
|
80 |
+
(
|
81 |
+
prof_name,
|
82 |
+
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
|
83 |
+
"cluster_proportions"
|
84 |
+
],
|
85 |
+
)
|
86 |
+
for prof_name in prof_names
|
87 |
+
]
|
88 |
+
from pprint import pprint
|
89 |
+
|
90 |
+
pprint(professions_list_clusters)
|
91 |
+
totals = sorted(
|
92 |
+
[
|
93 |
+
(
|
94 |
+
k,
|
95 |
+
sum(
|
96 |
+
prof_clusters[str(k)]
|
97 |
+
for _, prof_clusters in professions_list_clusters
|
98 |
+
),
|
99 |
+
)
|
100 |
+
for k in range(num_clusters)
|
101 |
+
],
|
102 |
+
key=lambda x: x[1],
|
103 |
+
reverse=True,
|
104 |
+
)[:max_cols]
|
105 |
+
prof_list_pre_pandas = [
|
106 |
+
dict(
|
107 |
+
[
|
108 |
+
("Profession", prof_name),
|
109 |
+
(
|
110 |
+
"Entropy",
|
111 |
+
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
|
112 |
+
"entropy"
|
113 |
+
],
|
114 |
+
),
|
115 |
+
(
|
116 |
+
"Labor Women",
|
117 |
+
clusters_dicts[num_clusters][df_models[mod_name]][prof_name][
|
118 |
+
"labor_fm"
|
119 |
+
][0],
|
120 |
+
),
|
121 |
+
("", ""),
|
122 |
+
]
|
123 |
+
+ [(f"Cluster {k}", prof_clusters[str(k)]) for k, v in totals if v > 0]
|
124 |
+
)
|
125 |
+
for prof_name, prof_clusters in professions_list_clusters
|
126 |
+
]
|
127 |
+
clusters_df = pd.DataFrame.from_dict(prof_list_pre_pandas)
|
128 |
+
print("I'm fine")
|
129 |
+
return (
|
130 |
+
clusters_df.style.background_gradient(
|
131 |
+
axis=None, vmin=0, vmax=100, cmap="YlGnBu"
|
132 |
+
)
|
133 |
+
.format(precision=1)
|
134 |
+
.to_html()
|
135 |
+
)
|
136 |
+
|
137 |
+
|
138 |
+
def make_profession_table_df(num_clusters, prof_names, mod_name):
|
139 |
cl_df = clusters_by_size[num_clusters]
|
140 |
+
clusters_df = (
|
141 |
+
cl_df[df_models[mod_name]]
|
142 |
+
.apply(pd.Series)
|
143 |
+
.loc[prof_names]["cluster_proportions"]
|
144 |
+
.apply(pd.Series)
|
145 |
+
.reset_index()
|
146 |
+
.rename(columns={"index": "profession"})
|
147 |
+
.round(1)
|
148 |
+
)
|
149 |
+
labor_df = (
|
150 |
+
cl_df[df_models[mod_name]]
|
151 |
+
.apply(pd.Series)
|
152 |
+
.loc[prof_names]["labor_fm"]
|
153 |
+
.apply(pd.Series)
|
154 |
+
.rename(columns={0: "woman", 1: "male"})
|
155 |
+
.reset_index()
|
156 |
+
.rename(columns={"index": "profession"})
|
157 |
+
.round(1)
|
158 |
+
)
|
159 |
+
return (
|
160 |
+
clusters_df.style.background_gradient(cmap="YlGnBu").format(precision=1),
|
161 |
+
labor_df.style.background_gradient(cmap="coolwarm").to_html(),
|
162 |
+
)
|
163 |
+
|
164 |
|
165 |
+
# return clusters_df.style.background_gradient(axis=None, vmin=0, vmax=100, cmap="YlGnBu").format(precision=1), labor_df.style.background_gradient(cmap='coolwarm').to_html()
|
166 |
|
167 |
|
168 |
with gr.Blocks() as demo:
|
|
|
178 |
value=12,
|
179 |
label="How many clusters do you want to use to represent identities?",
|
180 |
)
|
181 |
+
model_choices = gr.Dropdown(
|
182 |
+
[
|
183 |
+
"All Models",
|
184 |
+
"Stable Diffusion 1.4",
|
185 |
+
"Stable Diffusion 2",
|
186 |
+
"Dall-E 2",
|
187 |
+
],
|
188 |
+
value="All Models",
|
189 |
+
label="Which models do you want to compare?",
|
190 |
+
interactive=True,
|
191 |
+
)
|
192 |
+
profession_choices_overview = gr.Dropdown(
|
193 |
+
professions,
|
194 |
+
value=["CEO", "social worker"],
|
195 |
+
label="Which professions do you want to compare?",
|
196 |
+
multiselect=True,
|
197 |
interactive=True,
|
198 |
)
|
199 |
+
with gr.Column(scale=3):
|
200 |
+
# gr.Markdown("")
|
201 |
+
# order = gr.Dropdown(
|
202 |
+
# ["entropy", "cluster/sum of clusters"],
|
203 |
+
# value="entropy",
|
204 |
+
# label="Order rows by:",
|
205 |
+
# interactive=True,
|
206 |
+
# )
|
207 |
with gr.Row():
|
208 |
table = gr.HTML(
|
209 |
label="Profession assignment per cluster", wrap=True
|
210 |
)
|
211 |
+
# with gr.Row():
|
212 |
+
# labor_table = gr.HTML(
|
213 |
+
# label="Labor Bureau Statistics per profession", wrap=True
|
214 |
+
# )
|
215 |
+
profession_choices_overview.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
make_profession_table,
|
217 |
+
[num_clusters, profession_choices_overview, model_choices],
|
218 |
+
table,
|
219 |
queue=False,
|
220 |
)
|
221 |
+
# demo.load(
|
222 |
+
# make_profession_table,
|
223 |
+
# [num_clusters, profession_choices_1, model_choices],
|
224 |
+
# [table, labor_table],
|
225 |
+
# queue=False,
|
226 |
+
# )
|
227 |
|
228 |
# with gr.Accordion("Tag Frequencies", open=False):
|
229 |
|
|
|
236 |
)
|
237 |
with gr.Row():
|
238 |
with gr.Column():
|
239 |
+
profession_choice_focus = gr.Dropdown(
|
240 |
+
choices=professions,
|
241 |
+
value="social worker",
|
242 |
+
label="Select profession:",
|
243 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
with gr.Column():
|
245 |
plot = gr.Plot(
|
246 |
+
label=f"Makeup of the cluster assignments for profession {profession_choice_focus}"
|
247 |
+
)
|
248 |
+
profession_choice_focus.change(
|
249 |
+
make_profession_plot,
|
250 |
+
[num_clusters, profession_choice_focus],
|
251 |
+
plot,
|
252 |
+
queue=False,
|
253 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
with gr.Row():
|
255 |
gr.Markdown("TODO: show examplars for cluster")
|
256 |
|