learn / app.py
so0's picture
Update app.py
627db6a verified
import gradio as gr
import threading
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# GPU๊ฐ€ ์•„๋‹Œ CPU์—์„œ ์‹คํ–‰ํ•˜๋„๋ก ์„ค์ •
device = torch.device("cpu")
# IMDb ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋”ฉ
dataset = load_dataset("imdb")
# ๋ฐ์ดํ„ฐ์…‹์˜ ํ…์ŠคํŠธ ์ปฌ๋Ÿผ ์ž๋™ ๊ฐ์ง€
text_column = dataset["train"].column_names[0] # ๊ธฐ๋ณธ์ ์œผ๋กœ "text"์ผ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ
# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.to(device) # ๋ชจ๋ธ์„ CPU๋กœ ์ด๋™
# ๋ฐ์ดํ„ฐ์…‹์„ ๋ชจ๋ธ์— ๋งž๊ฒŒ ์ „์ฒ˜๋ฆฌ
def tokenize_function(examples):
return tokenizer(examples[text_column], padding="max_length", truncation=True)
tokenized_train_datasets = dataset["train"].map(tokenize_function, batched=True, batch_size=None, remove_columns=[text_column])
tokenized_test_datasets = dataset["test"].map(tokenize_function, batched=True, batch_size=None, remove_columns=[text_column])
# ํ›ˆ๋ จ ์„ค์ • (GPU ์‚ฌ์šฉ ์•ˆ ํ•จ)
training_args = TrainingArguments(
output_dir="./results", # ๊ฒฐ๊ณผ ์ €์žฅ ๊ฒฝ๋กœ
num_train_epochs=1, # ํ›ˆ๋ จ ์—ํญ ์ˆ˜ 1๋กœ ์„ค์ • (๋น ๋ฅด๊ฒŒ ํ…Œ์ŠคํŠธ)
per_device_train_batch_size=4, # ๋ฐฐ์น˜ ํฌ๊ธฐ ์ค„์ด๊ธฐ (CPU์—์„œ๋Š” ์ž‘์€ ๊ฐ’ ์ถ”์ฒœ)
per_device_eval_batch_size=4, # ๋ฐฐ์น˜ ํฌ๊ธฐ ์ค„์ด๊ธฐ
evaluation_strategy="epoch", # ์—ํญ๋งˆ๋‹ค ๊ฒ€์ฆ
save_strategy="epoch",
logging_dir="./logs", # ๋กœ๊ทธ ์ €์žฅ ๊ฒฝ๋กœ
logging_steps=100, # 100 ์Šคํ…๋งˆ๋‹ค ๋กœ๊ทธ ์ถœ๋ ฅ
report_to="none", # ํ—ˆ๊น…ํŽ˜์ด์Šค ์—…๋กœ๋“œ ์‹œ ๋กœ๊น… ๋น„ํ™œ์„ฑํ™”
load_best_model_at_end=True, # ์ตœ์ƒ์˜ ๋ชจ๋ธ๋กœ ์ข…๋ฃŒ
no_cuda=True # โŒ GPU ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ์„ค์ •
)
# ํ›ˆ๋ จ ํ•จ์ˆ˜
def train_model():
trainer = Trainer(
model=model, # ํ›ˆ๋ จํ•  ๋ชจ๋ธ
args=training_args, # ํ›ˆ๋ จ ์ธ์ž
train_dataset=tokenized_train_datasets, # ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹
eval_dataset=tokenized_test_datasets, # ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹
)
trainer.train()
# ํ›ˆ๋ จ์„ ๋ณ„๋„์˜ ์Šค๋ ˆ๋“œ์—์„œ ์‹คํ–‰
def start_training():
train_thread = threading.Thread(target=train_model)
train_thread.start()
# ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ ํ•จ์ˆ˜ (CPU์—์„œ ์‹คํ–‰)
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
with torch.no_grad(): # ๋ถˆํ•„์š”ํ•œ ์—ฐ์‚ฐ ๋ฐฉ์ง€
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
return str(predicted_class) # Gradio์—์„œ ๋ฌธ์ž์—ด ๋ฐ˜ํ™˜์ด ๋” ์•ˆ์ •์ 
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
demo = gr.Interface(fn=classify_text, inputs="text", outputs="text")
# ํ›ˆ๋ จ ์‹œ์ž‘๊ณผ Gradio UI ์‹คํ–‰
def launch_app():
start_training() # ํ›ˆ๋ จ ์‹œ์ž‘
demo.launch() # Gradio UI ์‹คํ–‰
# ํ—ˆ๊น…ํŽ˜์ด์Šค Spaces์— ์—…๋กœ๋“œํ•  ๋•Œ ์‹คํ–‰
if __name__ == "__main__":
launch_app()