File size: 10,671 Bytes
133562c
 
 
 
 
 
 
d5ee2a4
 
d54b468
133562c
 
 
 
 
d5ee2a4
133562c
 
 
3ccf726
 
 
 
 
133562c
 
 
 
 
 
 
 
 
 
 
 
919ffc2
d5ee2a4
b8dee70
 
133562c
b8dee70
133562c
d5ee2a4
133562c
 
 
 
 
 
 
b8dee70
 
 
 
 
 
 
 
 
 
 
 
 
133562c
 
 
 
 
b8dee70
d5ee2a4
133562c
d5ee2a4
133562c
b8dee70
133562c
d5ee2a4
133562c
 
 
 
 
 
 
b8dee70
 
 
 
 
 
 
 
 
 
 
 
 
133562c
 
 
d5ee2a4
 
 
 
 
 
 
 
 
b8dee70
 
133562c
d5ee2a4
 
 
 
 
 
 
 
 
133562c
 
 
d5ee2a4
133562c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ee2a4
133562c
d54b468
 
133562c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8dee70
 
133562c
 
 
 
 
 
 
b8dee70
133562c
b8dee70
133562c
 
 
 
 
 
b8dee70
 
 
 
 
 
 
133562c
 
 
 
 
919ffc2
 
 
 
 
 
b8dee70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ee2a4
 
 
 
 
133562c
 
b8dee70
 
 
 
 
 
 
 
 
 
133562c
 
 
 
 
 
 
 
b8dee70
d5ee2a4
133562c
 
 
 
 
 
 
 
 
 
 
b8dee70
133562c
b8dee70
133562c
b8dee70
133562c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
from gradio_i18n import Translate, gettext as _
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
import torch
from threading import Thread
import requests
import json
import io
from PIL import Image
import os
import base64
from openai import OpenAI

default_img = None
default_base_url = "https://openrouter.ai/api/v1"
default_api_model = "google/gemma-3-27b-it"

model_id = "google/gemma-3-4b-it"

model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto"
).eval()

processor = AutoProcessor.from_pretrained(model_id)

generate_kwargs = {
    'max_new_tokens': 1000,
    'do_sample': True,
    'temperature': 1.0
}

lang_store = {
    "und": {
        "confirm": "Confirm",
        "default_description": "",
        "additional_description": "Character description (optional)",
        "description_placeholder": "Information that is not shown in the reference sheet, such as the character's name, personality, past stories and habit of saying.",
        "more_imgs": "More reference images of the character (optional)",
        "title": "<h1>Chat with a character via reference sheet!</h1>",
        "powered_by_gemma": "<p>Powered by <a href='https://blog.google/technology/developers/gemma-3/'>Gemma 3</a></p>",
        "upload": "Upload the reference sheet of your character here",
        "prompt": "You are the character in the image, use %s. Do not include list in response unless requested. Do not mention the reference images. Start without confirmation.",
        "additional_info_prompt": "Additional info: ",
        "additional_reference_images_prompt": "Additional reference images of the character:",
        "description": "Description",
        "more_options": "More Options",
        "method": "Method",
        "base_url": "Base URL",
        "api_model": "API Model",
        "api_key": "API Key",
        "local": "Local",
        "chatbox": "Chat Box",
        "character_language": "The language used by the character",
        "en": "English",
        "zh": "Simplified Chinese",
        "zh-Hant": "Traditional Chinese",
        "ja": "Japanese",
        "ko": "Korean",
        "fr": "French",
        "de": "German",
        "es": "Spanish",
        "ru": "Russian",
        "ar": "Arabic",
        "default_language": "en",
    },
    "zh": {
        "confirm": "确认",
        "default_description": "",
        "additional_description": "角色描述(可选)",
        "description_placeholder": "未在设定图中包含的角色信息,如角色姓名、性格、言语习惯、过往经历等。",
        "more_imgs": "更多角色参考图(可选,可上传多张)",
        "title": "<h1>与设定图中的角色聊天!</h1>",
        "powered_by_gemma": "<p>由 <a href='https://blog.google/technology/developers/gemma-3/'>Gemma 3</a> 驱动</p>",
        "upload": "在这里上传角色设定图",
        "prompt": "你的身份是图中的角色,使用%s。除非对方要求,否则不在回复中使用列表。不在回复中提及参考图。无需确认。",
        "additional_info_prompt": "补充信息:",
        "additional_reference_images_prompt": "该角色的更多参考图:",
        "description": "角色描述",
        "more_options": "更多选项",
        "method": "方法",
        "base_url": "API 地址",
        "api_model": "API 模型",
        "api_key": "API Key",
        "local": "本地",
        "chatbox": "聊天窗口",
        "character_language": "角色聊天所用语言",
        "en": "英语",
        "zh": "简体中文",
        "zh-Hant": "繁体中文",
        "ja": "日语",
        "ko": "韩语",
        "fr": "法语",
        "de": "德语",
        "es": "西班牙语",
        "ru": "俄语",
        "ar": "阿拉伯语",
        "default_language": "zh",
    },
}

def encode_img(filepath, thumbnail=(896, 896)):
    more_img = Image.open(filepath)
    more_img = more_img.convert('RGB')
    more_img.thumbnail(thumbnail)
    buffer = io.BytesIO()
    more_img.save(buffer, "JPEG", quality=60)
    encoded_img = "data:image/jpeg;base64," + base64.b64encode(buffer.getvalue()).decode("utf-8")
    return encoded_img

def get_init_prompt(img, description, more_imgs, character_language):
    prompt = _("prompt") % _(character_language)
    if description != "":
        prompt += "\n" + _("additional_info_prompt") + description
    if more_imgs is None:
        more_imgs = []
    if len(more_imgs) > 0:
        prompt += "\n" + _("additional_reference_images_prompt")
    content = [
        {"type": "image", "url": encode_img(img)},
        {"type": "text", "text": prompt}
    ] + [{"type": "image", "url": encode_img(filepath)} for filepath in more_imgs]
    return [
        {
            "role": "user",
            "content": content
        }
    ]


def generate(history, engine, base_url, api_model, api_key):
    if engine == 'local':
        inputs = processor.apply_chat_template(
            history, add_generation_prompt=True, tokenize=True,
            return_dict=True, return_tensors="pt"
        ).to(model.device, dtype=torch.bfloat16)

        streamer = TextIteratorStreamer(processor, skip_prompt=True)

        with torch.inference_mode():
            thread = Thread(target=model.generate, kwargs=dict(**inputs, **generate_kwargs, streamer=streamer))
            thread.start()

            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
                yield generated_text
    elif engine == 'api':
        for item in history:
            for item_i in item['content']:
                if item_i['type'] == 'image':
                    item_i['type'] = 'image_url'
                    item_i['image_url'] = {'url': item_i['url']}
                    del item_i['url']
        if base_url == default_base_url and api_model == default_api_model and api_key == "":
            api_key = os.environ['OPENROUTER_TOKEN']
        client = OpenAI(base_url=base_url, api_key=api_key)
        stream = client.chat.completions.create(
            model=api_model,
            messages=history,
            stream=True,
            temperature=generate_kwargs['temperature']
        )
        collected_text = ""
        for chunk in stream:
            delta = chunk.choices[0].delta
            if delta.content:
                collected_text += delta.content
                yield collected_text


def prefill_chatbot(img, description, more_imgs, character_language, engine, base_url, api_model, api_key):
    history = get_init_prompt(img, description, more_imgs, character_language)

    ret = [{'role': 'assistant', 'content': ""}]
    for generated_text in generate(history, engine, base_url, api_model, api_key):
        ret[0]['content'] = generated_text
        yield ret


def response(message, history: list, img, description, more_imgs, character_language, engine, base_url, api_model, api_key):
    history = [{"role": item["role"], "content": [{"type": "text", "text": item["content"]}]} for item in history]
    history = get_init_prompt(img, description, more_imgs, character_language) + history
    history.append(
        {"role": "user", "content": [{"type": "text", "text": message}]}
    )
    for generated_text in generate(history, engine, base_url, api_model, api_key):
        yield generated_text

def set_default_character_language(request: gr.Request):
    if request.headers["Accept-Language"].split(",")[0].lower().startswith("zh"):
        default_language = lang_store['zh']['default_language']
    else:
        default_language = lang_store['und']['default_language']
    return gr.update(value=default_language)


with gr.Blocks(title="Chat with a character via reference sheet!") as demo:
    with Translate(lang_store) as lang:
        gr.HTML(_("title"))
        img = gr.Image(type="filepath", value=default_img, label=_("upload"), render=False)
        description = gr.TextArea(
            value=_("default_description"),
            label=_("additional_description"),
            placeholder=_("description_placeholder"),
            render=False
        )
        character_language = gr.Dropdown(
            choices=[
                (_("en"), "en"),
                (_("zh"), "zh"),
                (_("zh-Hant"), "zh-Hant"),
                (_("ja"), "ja"),
                (_("ko"), "ko"),
                (_("fr"), "fr"),
                (_("de"), "de"),
                (_("es"), "es"),
                (_("ru"), "ru"),
                (_("ar"), "ar"),
            ],
            label=_("character_language"),
            render=False,
            interactive = True
        )
        more_imgs = gr.Files(
            label=_("more_imgs"),
            file_types=["image"],
            render=False
        )
        confirm_btn = gr.Button(_("confirm"), render=False)
        chatbot = gr.Chatbot(height=600, type='messages', label=_("chatbox"), render=False)
        engine = gr.Radio(
            choices=[
                (_("local"), "local"),
                (_("API"), "api")
            ],
            value='api',
            label=_("method"),
            render=False,
            interactive=True
        )
        base_url = gr.Textbox(label=_("base_url"), render=False, value=default_base_url)
        api_model = gr.Textbox(label=_("api_model"), render=False, value=default_api_model)
        api_key = gr.Textbox(label=_("api_key"), render=False)
        with gr.Row():
            with gr.Column(scale=4):
                img.render()
                with gr.Tab(_("description")):
                    description.render()
                    character_language.render()
                    more_imgs.render()
                with gr.Tab(_("more_options")):
                    engine.render()
                    base_url.render()
                    api_model.render()
                    api_key.render()
                confirm_btn.render()
            with gr.Column(scale=6):
                chat = gr.ChatInterface(
                    response,
                    chatbot=chatbot,
                    type="messages",
                    additional_inputs=[img, description, more_imgs, character_language, engine, base_url, api_model, api_key],
                )
        confirm_btn.click(prefill_chatbot, [img, description, more_imgs, character_language, engine, base_url, api_model, api_key], chat.chatbot)\
            .then(lambda x: x, chat.chatbot, chat.chatbot_value)
    demo.load(set_default_character_language, None, character_language)


if __name__ == "__main__":
    demo.launch()