Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +155 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from transformers import pipeline, AutoTokenizer
|
5 |
+
from pdf2image import convert_from_bytes
|
6 |
+
import pytesseract
|
7 |
+
import torch
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Configuration
|
11 |
+
ABSTRACT_MODEL = "sshleifer/distilbart-cnn-12-6"
|
12 |
+
TITLE_MODEL = "linydub/bart-large-samsum"
|
13 |
+
MAX_FILE_SIZE_MB = 10
|
14 |
+
TESSERACT_PATH = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # Update this path!
|
15 |
+
|
16 |
+
# Set Tesseract path
|
17 |
+
pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_models():
|
21 |
+
"""Load and cache models with proper tokenizers"""
|
22 |
+
with st.spinner('π Loading AI models (first time 2-5 mins)...'):
|
23 |
+
# Abstract model
|
24 |
+
abs_tokenizer = AutoTokenizer.from_pretrained(ABSTRACT_MODEL)
|
25 |
+
abstractive = pipeline(
|
26 |
+
"summarization",
|
27 |
+
model=ABSTRACT_MODEL,
|
28 |
+
tokenizer=abs_tokenizer,
|
29 |
+
device=0 if torch.cuda.is_available() else -1
|
30 |
+
)
|
31 |
+
|
32 |
+
# Title model
|
33 |
+
title_tokenizer = AutoTokenizer.from_pretrained(TITLE_MODEL)
|
34 |
+
title_pipe = pipeline(
|
35 |
+
"text2text-generation",
|
36 |
+
model=TITLE_MODEL,
|
37 |
+
tokenizer=title_tokenizer,
|
38 |
+
max_length=60
|
39 |
+
)
|
40 |
+
|
41 |
+
return abstractive, title_pipe, abs_tokenizer, title_tokenizer
|
42 |
+
|
43 |
+
def extract_text(pdf_file):
|
44 |
+
"""Handle both text and image-based PDFs"""
|
45 |
+
try:
|
46 |
+
# First try regular text extraction
|
47 |
+
reader = PdfReader(pdf_file)
|
48 |
+
text = " ".join([page.extract_text() or "" for page in reader.pages])
|
49 |
+
|
50 |
+
# Fallback to OCR if no text found
|
51 |
+
if not text.strip():
|
52 |
+
images = convert_from_bytes(pdf_file.getvalue())
|
53 |
+
text = " ".join([pytesseract.image_to_string(img) for img in images])
|
54 |
+
|
55 |
+
return clean_text(text)
|
56 |
+
except Exception as e:
|
57 |
+
st.error(f"PDF Error: {str(e)}")
|
58 |
+
return ""
|
59 |
+
|
60 |
+
def clean_text(text):
|
61 |
+
"""Remove headers/footers/section numbers"""
|
62 |
+
patterns = [
|
63 |
+
r'\n\s*(\d+)\s*\n', # Page numbers
|
64 |
+
r'Proceedings of .*?\n', # Conference headers
|
65 |
+
r'arXiv:\d+\.\d+v\d+.*?\n', # arXiv footers
|
66 |
+
r'Β©\d{4}.*?\n', # Copyright
|
67 |
+
r'http\S+', # URLs
|
68 |
+
r'\b(?:Figure|Table)\s+\d+' # Figure/table captions
|
69 |
+
]
|
70 |
+
|
71 |
+
for pattern in patterns:
|
72 |
+
text = re.sub(pattern, '', text, flags=re.IGNORECASE)
|
73 |
+
|
74 |
+
return text.strip()
|
75 |
+
|
76 |
+
def generate_title(abstract, title_pipe):
|
77 |
+
"""Generate a concise and meaningful research paper title (4-5 words)."""
|
78 |
+
prompt = f"Generate a short, research-style title (4-5 words) for this abstract: {abstract}"
|
79 |
+
|
80 |
+
title = title_pipe(
|
81 |
+
prompt,
|
82 |
+
num_beams=5,
|
83 |
+
early_stopping=True,
|
84 |
+
max_length=10, # Limit to ~4-5 words
|
85 |
+
do_sample=False
|
86 |
+
)[0]['generated_text'].strip()
|
87 |
+
|
88 |
+
# Remove unwanted tokens
|
89 |
+
title = title.replace("<pad>", "").replace("</s>", "").strip()
|
90 |
+
|
91 |
+
# Ensure title is concise (4-5 words)
|
92 |
+
words = title.split()
|
93 |
+
if len(words) > 5:
|
94 |
+
title = " ".join(words[:5]) # Keep only the first 5 words
|
95 |
+
|
96 |
+
return title
|
97 |
+
|
98 |
+
def main():
|
99 |
+
# Main title
|
100 |
+
st.markdown("<h1 style='text-align: center;'>RESEARCH PAPER TITLE AND ABSTRACT GENERATION</h1>",
|
101 |
+
unsafe_allow_html=True)
|
102 |
+
|
103 |
+
# Upload section
|
104 |
+
col1, col2 = st.columns([4, 1])
|
105 |
+
with col1:
|
106 |
+
uploaded_file = st.file_uploader("Upload here", type=["pdf"], label_visibility="collapsed")
|
107 |
+
with col2:
|
108 |
+
generate_btn = st.button("ENTER", use_container_width=True)
|
109 |
+
|
110 |
+
if generate_btn and uploaded_file:
|
111 |
+
if uploaded_file.size > MAX_FILE_SIZE_MB * 1024 * 1024:
|
112 |
+
st.error(f"File too large! Max {MAX_FILE_SIZE_MB}MB allowed")
|
113 |
+
return
|
114 |
+
|
115 |
+
raw_text = extract_text(uploaded_file)
|
116 |
+
if not raw_text.strip():
|
117 |
+
st.warning("No text extracted - document might be corrupted")
|
118 |
+
return
|
119 |
+
|
120 |
+
abstract_pipe, title_pipe, abs_tokenizer, title_tokenizer = load_models()
|
121 |
+
|
122 |
+
with st.status("Processing...", expanded=True) as status:
|
123 |
+
try:
|
124 |
+
# Processing steps
|
125 |
+
st.write("π Analyzing document...")
|
126 |
+
clean_abstract_text = raw_text[:2000] # First 2000 characters
|
127 |
+
|
128 |
+
st.write("βοΈ Generating abstract...")
|
129 |
+
abstract = abstract_pipe(
|
130 |
+
clean_abstract_text,
|
131 |
+
max_length=150,
|
132 |
+
min_length=50,
|
133 |
+
do_sample=False
|
134 |
+
)[0]['summary_text']
|
135 |
+
|
136 |
+
st.write("ποΈ Creating title...")
|
137 |
+
title = generate_title(abstract, title_pipe)
|
138 |
+
|
139 |
+
status.update(label="Complete!", state="complete", expanded=False)
|
140 |
+
|
141 |
+
# Display results
|
142 |
+
st.markdown(f"""
|
143 |
+
<div style='margin-top: 30px;'>
|
144 |
+
<p style='font-size: 14px; font-weight: bold;'>TITLE</p>
|
145 |
+
<p style='font-size: 14px; margin-bottom: 20px;'>{title}</p>
|
146 |
+
<p style='font-size: 12px; font-weight: bold;'>ABSTRACT</p>
|
147 |
+
<p style='font-size: 12px;'>{abstract}</p>
|
148 |
+
</div>
|
149 |
+
""", unsafe_allow_html=True)
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
st.error(f"Processing failed: {str(e)}")
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
+
torch==2.3.0+cpu
|
3 |
+
streamlit==1.30.0
|
4 |
+
PyPDF2==3.0.1
|
5 |
+
transformers==4.38.2
|
6 |
+
sentencepiece==0.2.0
|
7 |
+
pdf2image==1.17.0
|
8 |
+
pytesseract==0.3.10
|
9 |
+
pillow==10.3.0
|
10 |
+
python-dotenv==1.0.1
|