Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -213,14 +213,14 @@ class main():
|
|
213 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
214 |
)
|
215 |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
216 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
217 |
self.noise_scheduler.set_timesteps(ddim_steps)
|
218 |
latents = latents * self.noise_scheduler.init_noise_sigma
|
219 |
|
220 |
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
221 |
latent_model_input = torch.cat([latents] * 2)
|
222 |
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
223 |
-
|
224 |
with network:
|
225 |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
226 |
|
|
|
213 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
214 |
)
|
215 |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
216 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).bfloat16()
|
217 |
self.noise_scheduler.set_timesteps(ddim_steps)
|
218 |
latents = latents * self.noise_scheduler.init_noise_sigma
|
219 |
|
220 |
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
221 |
latent_model_input = torch.cat([latents] * 2)
|
222 |
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
223 |
+
|
224 |
with network:
|
225 |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
226 |
|