Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Re-add images in inference. Inference endpoint model still broken context length
Browse files- app.py +1 -1
- e2bqwen.py +128 -168
app.py
CHANGED
@@ -29,8 +29,8 @@ if not os.path.exists(TMP_DIR):
|
|
29 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
30 |
login(token=hf_token)
|
31 |
model = QwenVLAPIModel(
|
|
|
32 |
hf_token = hf_token,
|
33 |
-
hf_base_url="https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud"
|
34 |
)
|
35 |
|
36 |
|
|
|
29 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
30 |
login(token=hf_token)
|
31 |
model = QwenVLAPIModel(
|
32 |
+
hf_base_url="https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud",
|
33 |
hf_token = hf_token,
|
|
|
34 |
)
|
35 |
|
36 |
|
e2bqwen.py
CHANGED
@@ -346,7 +346,47 @@ class E2BVisionAgent(CodeAgent):
|
|
346 |
self.desktop.kill()
|
347 |
print("E2B sandbox terminated")
|
348 |
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
# class QwenVLAPIModel(Model):
|
352 |
# """Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
@@ -359,16 +399,25 @@ from smolagents import HfApiModel
|
|
359 |
# hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
360 |
# ):
|
361 |
# super().__init__()
|
|
|
362 |
# self.model_id = model_path
|
|
|
|
|
363 |
# self.hf_base_url = hf_base_url
|
364 |
-
|
365 |
-
#
|
366 |
-
#
|
|
|
367 |
# )
|
368 |
-
|
369 |
-
#
|
370 |
-
|
371 |
-
#
|
|
|
|
|
|
|
|
|
|
|
372 |
# )
|
373 |
|
374 |
# def __call__(
|
@@ -377,15 +426,27 @@ from smolagents import HfApiModel
|
|
377 |
# stop_sequences: Optional[List[str]] = None,
|
378 |
# **kwargs
|
379 |
# ) -> ChatMessage:
|
|
|
380 |
|
|
|
|
|
|
|
|
|
381 |
# try:
|
382 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
# except Exception as e:
|
384 |
# print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
385 |
-
|
386 |
-
|
|
|
387 |
# try:
|
388 |
-
# return self.
|
389 |
# except Exception as e:
|
390 |
# raise Exception(f"Both endpoints failed. Last error: {e}")
|
391 |
|
@@ -411,7 +472,6 @@ from smolagents import HfApiModel
|
|
411 |
# else:
|
412 |
# # Image is a PIL image or similar object
|
413 |
# img_byte_arr = BytesIO()
|
414 |
-
# item["image"].save(img_byte_arr, format="PNG")
|
415 |
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
416 |
|
417 |
# content.append({
|
@@ -428,167 +488,67 @@ from smolagents import HfApiModel
|
|
428 |
|
429 |
# return formatted_messages
|
430 |
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
def __init__(
|
435 |
-
self,
|
436 |
-
model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct",
|
437 |
-
provider: str = "hyperbolic",
|
438 |
-
hf_token: str = None,
|
439 |
-
hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
440 |
-
):
|
441 |
-
super().__init__()
|
442 |
-
self.model_path = model_path
|
443 |
-
self.model_id = model_path
|
444 |
-
self.provider = provider
|
445 |
-
self.hf_token = hf_token
|
446 |
-
self.hf_base_url = hf_base_url
|
447 |
-
|
448 |
-
# Initialize hyperbolic client
|
449 |
-
self.hyperbolic_client = InferenceClient(
|
450 |
-
provider=self.provider,
|
451 |
-
)
|
452 |
-
|
453 |
-
assert not self.hf_base_url.endswith("/v1/"), "Enter your base url without '/v1/' suffix."
|
454 |
-
|
455 |
-
# Initialize HF OpenAI-compatible client if token is provided
|
456 |
-
self.hf_client = None
|
457 |
-
from openai import OpenAI
|
458 |
-
self.hf_client = OpenAI(
|
459 |
-
base_url=self.hf_base_url + "/v1/",
|
460 |
-
api_key=self.hf_token
|
461 |
-
)
|
462 |
-
|
463 |
-
def __call__(
|
464 |
-
self,
|
465 |
-
messages: List[Dict[str, Any]],
|
466 |
-
stop_sequences: Optional[List[str]] = None,
|
467 |
-
**kwargs
|
468 |
-
) -> ChatMessage:
|
469 |
-
"""Convert a list of messages to an API request with fallback mechanism"""
|
470 |
-
|
471 |
-
# Format messages once for both APIs
|
472 |
-
formatted_messages = self._format_messages(messages)
|
473 |
-
|
474 |
-
# First try the HF endpoint if available - THIS ALWAYS FAILS SO SKIPPING
|
475 |
-
try:
|
476 |
-
completion = self._call_hf_endpoint(
|
477 |
-
formatted_messages,
|
478 |
-
stop_sequences,
|
479 |
-
**kwargs
|
480 |
-
)
|
481 |
-
return ChatMessage(role=MessageRole.ASSISTANT, content=completion)
|
482 |
-
except Exception as e:
|
483 |
-
print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
484 |
-
# Continue to fallback
|
485 |
-
|
486 |
-
# Fallback to hyperbolic
|
487 |
-
try:
|
488 |
-
return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs)
|
489 |
-
except Exception as e:
|
490 |
-
raise Exception(f"Both endpoints failed. Last error: {e}")
|
491 |
-
|
492 |
-
def _format_messages(self, messages: List[Dict[str, Any]]):
|
493 |
-
"""Format messages for API requests - works for both endpoints"""
|
494 |
-
|
495 |
-
formatted_messages = []
|
496 |
-
|
497 |
-
for msg in messages:
|
498 |
-
role = msg["role"]
|
499 |
-
content = []
|
500 |
-
|
501 |
-
if isinstance(msg["content"], list):
|
502 |
-
for item in msg["content"]:
|
503 |
-
if item["type"] == "text":
|
504 |
-
content.append({"type": "text", "text": item["text"]})
|
505 |
-
elif item["type"] == "image":
|
506 |
-
# # Handle image path or direct image object
|
507 |
-
# if isinstance(item["image"], str):
|
508 |
-
# # Image is a path
|
509 |
-
# with open(item["image"], "rb") as image_file:
|
510 |
-
# base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
511 |
-
# else:
|
512 |
-
# # Image is a PIL image or similar object
|
513 |
-
# img_byte_arr = BytesIO()
|
514 |
-
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
515 |
-
|
516 |
-
# content.append({
|
517 |
-
# "type": "image_url",
|
518 |
-
# "image_url": {
|
519 |
-
# "url": f"data:image/png;base64,{base64_image}"
|
520 |
-
# }
|
521 |
-
# })
|
522 |
-
pass
|
523 |
-
else:
|
524 |
-
# Plain text message
|
525 |
-
content = [{"type": "text", "text": msg["content"]}]
|
526 |
-
|
527 |
-
formatted_messages.append({"role": role, "content": content})
|
528 |
-
|
529 |
-
return formatted_messages
|
530 |
-
|
531 |
-
def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs):
|
532 |
-
"""Call the Hugging Face OpenAI-compatible endpoint"""
|
533 |
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
|
560 |
-
|
561 |
-
|
562 |
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
|
572 |
-
|
573 |
-
|
574 |
|
575 |
-
|
576 |
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
|
|
346 |
self.desktop.kill()
|
347 |
print("E2B sandbox terminated")
|
348 |
|
349 |
+
|
350 |
+
class QwenVLAPIModel(Model):
|
351 |
+
"""Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
352 |
+
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
hf_base_url,
|
356 |
+
model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct",
|
357 |
+
provider: str = "hyperbolic",
|
358 |
+
hf_token: str = None,
|
359 |
+
):
|
360 |
+
super().__init__()
|
361 |
+
self.model_id = model_path
|
362 |
+
self.hf_base_url = hf_base_url
|
363 |
+
self.dedicated_endpoint_model = HfApiModel(
|
364 |
+
hf_base_url,
|
365 |
+
token=hf_token
|
366 |
+
)
|
367 |
+
self.fallback_model = HfApiModel(
|
368 |
+
model_path,
|
369 |
+
provider=provider,
|
370 |
+
token=hf_token,
|
371 |
+
)
|
372 |
+
|
373 |
+
def __call__(
|
374 |
+
self,
|
375 |
+
messages: List[Dict[str, Any]],
|
376 |
+
stop_sequences: Optional[List[str]] = None,
|
377 |
+
**kwargs
|
378 |
+
) -> ChatMessage:
|
379 |
+
|
380 |
+
try:
|
381 |
+
return self.dedicated_endpoint_model(messages, stop_sequences, **kwargs)
|
382 |
+
except Exception as e:
|
383 |
+
print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
384 |
+
|
385 |
+
# Continue to fallback
|
386 |
+
try:
|
387 |
+
return self.fallback_model(messages, stop_sequences, **kwargs)
|
388 |
+
except Exception as e:
|
389 |
+
raise Exception(f"Both endpoints failed. Last error: {e}")
|
390 |
|
391 |
# class QwenVLAPIModel(Model):
|
392 |
# """Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
|
|
399 |
# hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
400 |
# ):
|
401 |
# super().__init__()
|
402 |
+
# self.model_path = model_path
|
403 |
# self.model_id = model_path
|
404 |
+
# self.provider = provider
|
405 |
+
# self.hf_token = hf_token
|
406 |
# self.hf_base_url = hf_base_url
|
407 |
+
|
408 |
+
# # Initialize hyperbolic client
|
409 |
+
# self.hyperbolic_client = InferenceClient(
|
410 |
+
# provider=self.provider,
|
411 |
# )
|
412 |
+
|
413 |
+
# assert not self.hf_base_url.endswith("/v1/"), "Enter your base url without '/v1/' suffix."
|
414 |
+
|
415 |
+
# # Initialize HF OpenAI-compatible client if token is provided
|
416 |
+
# self.hf_client = None
|
417 |
+
# from openai import OpenAI
|
418 |
+
# self.hf_client = OpenAI(
|
419 |
+
# base_url=self.hf_base_url + "/v1/",
|
420 |
+
# api_key=self.hf_token
|
421 |
# )
|
422 |
|
423 |
# def __call__(
|
|
|
426 |
# stop_sequences: Optional[List[str]] = None,
|
427 |
# **kwargs
|
428 |
# ) -> ChatMessage:
|
429 |
+
# """Convert a list of messages to an API request with fallback mechanism"""
|
430 |
|
431 |
+
# # Format messages once for both APIs
|
432 |
+
# formatted_messages = self._format_messages(messages)
|
433 |
+
|
434 |
+
# # First try the HF endpoint if available - THIS ALWAYS FAILS SO SKIPPING
|
435 |
# try:
|
436 |
+
# completion = self._call_hf_endpoint(
|
437 |
+
# formatted_messages,
|
438 |
+
# stop_sequences,
|
439 |
+
# **kwargs
|
440 |
+
# )
|
441 |
+
# print("SUCCESSFUL call of inference endpoint")
|
442 |
+
# return ChatMessage(role=MessageRole.ASSISTANT, content=completion)
|
443 |
# except Exception as e:
|
444 |
# print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
445 |
+
# # Continue to fallback
|
446 |
+
|
447 |
+
# # Fallback to hyperbolic
|
448 |
# try:
|
449 |
+
# return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs)
|
450 |
# except Exception as e:
|
451 |
# raise Exception(f"Both endpoints failed. Last error: {e}")
|
452 |
|
|
|
472 |
# else:
|
473 |
# # Image is a PIL image or similar object
|
474 |
# img_byte_arr = BytesIO()
|
|
|
475 |
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
476 |
|
477 |
# content.append({
|
|
|
488 |
|
489 |
# return formatted_messages
|
490 |
|
491 |
+
# def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs):
|
492 |
+
# """Call the Hugging Face OpenAI-compatible endpoint"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
|
494 |
+
# # Extract parameters with defaults
|
495 |
+
# max_tokens = kwargs.get("max_new_tokens", 4096)
|
496 |
+
# temperature = kwargs.get("temperature", 0.7)
|
497 |
+
# top_p = kwargs.get("top_p", 0.9)
|
498 |
+
# stream = kwargs.get("stream", False)
|
499 |
|
500 |
+
# completion = self.hf_client.chat.completions.create(
|
501 |
+
# model="tgi", # Model name for the endpoint
|
502 |
+
# messages=formatted_messages,
|
503 |
+
# max_tokens=max_tokens,
|
504 |
+
# temperature=temperature,
|
505 |
+
# top_p=top_p,
|
506 |
+
# stream=stream,
|
507 |
+
# stop=stop_sequences
|
508 |
+
# )
|
509 |
|
510 |
+
# if stream:
|
511 |
+
# # For streaming responses, return a generator
|
512 |
+
# def stream_generator():
|
513 |
+
# for chunk in completion:
|
514 |
+
# yield chunk.choices[0].delta.content or ""
|
515 |
+
# return stream_generator()
|
516 |
+
# else:
|
517 |
+
# # For non-streaming, return the full text
|
518 |
+
# return completion.choices[0].message.content
|
519 |
|
520 |
+
# def _call_hyperbolic(self, formatted_messages, stop_sequences=None, **kwargs):
|
521 |
+
# """Call the hyperbolic API"""
|
522 |
|
523 |
+
# completion = self.hyperbolic_client.chat.completions.create(
|
524 |
+
# model=self.model_path,
|
525 |
+
# messages=formatted_messages,
|
526 |
+
# max_tokens=kwargs.get("max_new_tokens", 4096),
|
527 |
+
# temperature=kwargs.get("temperature", 0.7),
|
528 |
+
# top_p=kwargs.get("top_p", 0.9),
|
529 |
+
# stop=stop_sequences
|
530 |
+
# )
|
531 |
|
532 |
+
# # Extract the response text
|
533 |
+
# output_text = completion.choices[0].message.content
|
534 |
|
535 |
+
# return ChatMessage(role=MessageRole.ASSISTANT, content=output_text)
|
536 |
|
537 |
+
# def to_dict(self) -> Dict[str, Any]:
|
538 |
+
# """Convert the model to a dictionary"""
|
539 |
+
# return {
|
540 |
+
# "class": self.__class__.__name__,
|
541 |
+
# "model_path": self.model_path,
|
542 |
+
# "provider": self.provider,
|
543 |
+
# "hf_base_url": self.hf_base_url,
|
544 |
+
# # We don't save the API keys for security reasons
|
545 |
+
# }
|
546 |
|
547 |
+
# @classmethod
|
548 |
+
# def from_dict(cls, data: Dict[str, Any]) -> "QwenVLAPIModel":
|
549 |
+
# """Create a model from a dictionary"""
|
550 |
+
# return cls(
|
551 |
+
# model_path=data.get("model_path", "Qwen/Qwen2.5-VL-72B-Instruct"),
|
552 |
+
# provider=data.get("provider", "hyperbolic"),
|
553 |
+
# hf_base_url=data.get("hf_base_url", "https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud"),
|
554 |
+
# )
|