smhavens commited on
Commit
cfcfc3c
·
1 Parent(s): a974a6a

Testing for output

Browse files
Files changed (1) hide show
  1. main.py +31 -31
main.py CHANGED
@@ -9,55 +9,55 @@ import torch.nn.functional as F
9
 
10
 
11
  #Mean Pooling - Take attention mask into account for correct averaging
12
- def mean_pooling(model_output, attention_mask):
13
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
14
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
15
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
16
 
17
 
18
- def training():
19
- dataset = load_dataset("glue", "cola")
20
- dataset = dataset["train"]
21
 
22
- sentences = ["This is an example sentence", "Each sentence is converted"]
23
 
24
- model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
25
- embeddings = model.encode(sentences)
26
- print(embeddings)
27
 
28
- # Sentences we want sentence embeddings for
29
- sentences = ['This is an example sentence', 'Each sentence is converted']
30
 
31
- # Load model from HuggingFace Hub
32
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
33
- model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
34
 
35
- # Tokenize sentences
36
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
37
 
38
- # Compute token embeddings
39
- with torch.no_grad():
40
- model_output = model(**encoded_input)
41
 
42
- # Perform pooling
43
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
44
 
45
- # Normalize embeddings
46
- sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
47
 
48
- print("Sentence embeddings:")
49
- print(sentence_embeddings)
50
 
51
 
52
  def greet(name):
53
  return "Hello " + name + "!!"
54
 
55
 
56
- def main():
57
- return 0
58
 
59
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
60
  iface.launch()
61
 
62
- if __name__ == "__main__":
63
- main()
 
9
 
10
 
11
  #Mean Pooling - Take attention mask into account for correct averaging
12
+ # def mean_pooling(model_output, attention_mask):
13
+ # token_embeddings = model_output[0] #First element of model_output contains all token embeddings
14
+ # input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
15
+ # return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
16
 
17
 
18
+ # def training():
19
+ # dataset = load_dataset("glue", "cola")
20
+ # dataset = dataset["train"]
21
 
22
+ # sentences = ["This is an example sentence", "Each sentence is converted"]
23
 
24
+ # model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
25
+ # embeddings = model.encode(sentences)
26
+ # print(embeddings)
27
 
28
+ # # Sentences we want sentence embeddings for
29
+ # sentences = ['This is an example sentence', 'Each sentence is converted']
30
 
31
+ # # Load model from HuggingFace Hub
32
+ # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
33
+ # model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
34
 
35
+ # # Tokenize sentences
36
+ # encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
37
 
38
+ # # Compute token embeddings
39
+ # with torch.no_grad():
40
+ # model_output = model(**encoded_input)
41
 
42
+ # # Perform pooling
43
+ # sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
44
 
45
+ # # Normalize embeddings
46
+ # sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
47
 
48
+ # print("Sentence embeddings:")
49
+ # print(sentence_embeddings)
50
 
51
 
52
  def greet(name):
53
  return "Hello " + name + "!!"
54
 
55
 
56
+ # def main():
57
+ # return 0
58
 
59
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
60
  iface.launch()
61
 
62
+ # if __name__ == "__main__":
63
+ # main()