AnalogyArcade / app.py
smhavens
rename app.py
e369cb0
raw
history blame
2.07 kB
import gradio as gr
import spacy
import math
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
# def mean_pooling(model_output, attention_mask):
# token_embeddings = model_output[0] #First element of model_output contains all token embeddings
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# def training():
# dataset = load_dataset("glue", "cola")
# dataset = dataset["train"]
# sentences = ["This is an example sentence", "Each sentence is converted"]
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# embeddings = model.encode(sentences)
# print(embeddings)
# # Sentences we want sentence embeddings for
# sentences = ['This is an example sentence', 'Each sentence is converted']
# # Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# # Tokenize sentences
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# # Compute token embeddings
# with torch.no_grad():
# model_output = model(**encoded_input)
# # Perform pooling
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# # Normalize embeddings
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
# print("Sentence embeddings:")
# print(sentence_embeddings)
def greet(name):
return "Hello " + name + "!!"
# def main():
# return 0
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
# if __name__ == "__main__":
# main()