Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spacy | |
import math | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import torch.nn.functional as F | |
#Mean Pooling - Take attention mask into account for correct averaging | |
# def mean_pooling(model_output, attention_mask): | |
# token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
# return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# def training(): | |
# dataset = load_dataset("glue", "cola") | |
# dataset = dataset["train"] | |
# sentences = ["This is an example sentence", "Each sentence is converted"] | |
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# embeddings = model.encode(sentences) | |
# print(embeddings) | |
# # Sentences we want sentence embeddings for | |
# sentences = ['This is an example sentence', 'Each sentence is converted'] | |
# # Load model from HuggingFace Hub | |
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
# # Tokenize sentences | |
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
# # Compute token embeddings | |
# with torch.no_grad(): | |
# model_output = model(**encoded_input) | |
# # Perform pooling | |
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
# # Normalize embeddings | |
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) | |
# print("Sentence embeddings:") | |
# print(sentence_embeddings) | |
def greet(name): | |
return "Hello " + name + "!!" | |
# def main(): | |
# return 0 | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() | |
# if __name__ == "__main__": | |
# main() |