|
import spaces |
|
import gradio as gr |
|
import time |
|
import torch |
|
import tempfile |
|
import os |
|
import gc |
|
|
|
from loading_utils import load_image |
|
|
|
from segment_utils import( |
|
segment_image, |
|
restore_result, |
|
) |
|
from enhance_utils import enhance_sd_image |
|
from inversion_run_base import run as base_run |
|
|
|
DEFAULT_SRC_PROMPT = "a person" |
|
DEFAULT_EDIT_PROMPT = "a person with perfect face" |
|
|
|
DEFAULT_CATEGORY = "face" |
|
|
|
def image_to_image( |
|
input_image_path: str, |
|
input_image_prompt: str, |
|
edit_prompt: str, |
|
seed: int, |
|
w1: float, |
|
num_steps: int, |
|
start_step: int, |
|
guidance_scale: float, |
|
generate_size: int, |
|
mask_expansion: int = 50, |
|
mask_dilation: int = 2, |
|
save_quality: int = 95, |
|
enable_segment: bool = True, |
|
): |
|
segment_category = "face" |
|
w2 = 1.0 |
|
run_task_time = 0 |
|
time_cost_str = '' |
|
|
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
input_image = load_image(input_image_path) |
|
icc_profile = input_image.info.get('icc_profile') |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'load_image done') |
|
|
|
if enable_segment: |
|
target_area_image, croper = segment_image( |
|
input_image, |
|
segment_category, |
|
generate_size, |
|
mask_expansion, |
|
mask_dilation, |
|
) |
|
else: |
|
target_area_image = resize_image(input_image, generate_size) |
|
croper = None |
|
|
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'segment_image done') |
|
|
|
run_model = base_run |
|
try: |
|
res_image = run_model( |
|
target_area_image, |
|
input_image_prompt, |
|
edit_prompt , |
|
seed, |
|
w1, |
|
w2, |
|
num_steps, |
|
start_step, |
|
guidance_scale, |
|
) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'run_sd_model done') |
|
|
|
finally: |
|
torch.cuda.empty_cache() |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'cuda_empty_cache done') |
|
|
|
enhanced_image = res_image |
|
enhanced_image = enhance_sd_image(res_image) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'enhance_image done') |
|
|
|
if enable_segment: |
|
restored_image = restore_result(croper, segment_category, enhanced_image) |
|
else: |
|
restored_image = enhanced_image.resize(input_image.size) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'restore_result done') |
|
|
|
torch.cuda.empty_cache() |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'cuda_empty_cache done') |
|
if os.getenv('ENABLE_GC', False): |
|
gc.collect() |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'gc_collect done') |
|
|
|
extension = 'png' |
|
if restored_image.mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'webp' |
|
|
|
output_path = tempfile.mktemp(suffix=f".{extension}") |
|
restored_image.save(output_path, format=extension, quality=save_quality, icc_profile=icc_profile) |
|
|
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'save_image done') |
|
|
|
return output_path, restored_image, time_cost_str |
|
|
|
def get_time_cost( |
|
run_task_time, |
|
time_cost_str, |
|
step: str = '' |
|
): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
if step != '': |
|
time_cost_str += f'-->{step}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
def resize_image(image, target_size = 1024): |
|
h, w = image.size |
|
if h >= w: |
|
w = int(w * target_size / h) |
|
h = target_size |
|
else: |
|
h = int(h * target_size / w) |
|
w = target_size |
|
return image.resize((w, h)) |
|
|
|
|
|
def infer( |
|
input_image_path: str, |
|
input_image_prompt: str, |
|
edit_prompt: str, |
|
seed: int, |
|
w1: float, |
|
num_steps: int, |
|
start_step: int, |
|
guidance_scale: float, |
|
generate_size: int, |
|
mask_expansion: int = 50, |
|
mask_dilation: int = 2, |
|
save_quality: int = 95, |
|
enable_segment: bool = True, |
|
): |
|
return image_to_image( |
|
input_image_path, |
|
input_image_prompt, |
|
edit_prompt, |
|
seed, |
|
w1, |
|
num_steps, |
|
start_step, |
|
guidance_scale, |
|
generate_size, |
|
mask_expansion, |
|
mask_dilation, |
|
save_quality, |
|
enable_segment |
|
) |
|
|
|
infer = spaces.GPU(infer) |
|
|
|
def create_demo() -> gr.Blocks: |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) |
|
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) |
|
with gr.Accordion("Advanced Options", open=False): |
|
enable_segment = gr.Checkbox(label="Enable Segment", value=True) |
|
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) |
|
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") |
|
save_quality = gr.Slider(minimum=1, maximum=100, value=95, step=1, label="Save Quality") |
|
with gr.Column(): |
|
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") |
|
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step") |
|
g_btn = gr.Button("Edit Image") |
|
with gr.Accordion("Advanced Options", open=False): |
|
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale") |
|
seed = gr.Number(label="Seed", value=8) |
|
w1 = gr.Number(label="W1", value=1.5) |
|
generate_size = gr.Number(label="Generate Size", value=1024) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_path = gr.Image(label="Input Image", type="filepath", interactive=True) |
|
with gr.Column(): |
|
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) |
|
download_path = gr.File(label="Download the output image", interactive=False) |
|
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) |
|
|
|
g_btn.click( |
|
fn=infer, |
|
inputs=[input_image_path, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, mask_expansion, mask_dilation, save_quality, enable_segment], |
|
outputs=[download_path, restored_image, generated_cost], |
|
) |
|
|
|
|
|
|
|
return demo |