Stepan Sypkov commited on
Commit
5abff8d
·
1 Parent(s): 91eee89

change model4

Browse files
Files changed (2) hide show
  1. app.py +57 -64
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,65 +1,58 @@
1
  import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # client = InferenceClient("cognitivecomputations/dolphin-2.9.4-llama3.1-8b-gguf")
8
-
9
-
10
- # def respond(
11
- # message,
12
- # history: list[tuple[str, str]],
13
- # system_message,
14
- # max_tokens,
15
- # temperature,
16
- # top_p,
17
- # ):
18
- # messages = [{"role": "system", "content": system_message}]
19
-
20
- # for val in history:
21
- # if val[0]:
22
- # messages.append({"role": "user", "content": val[0]})
23
- # if val[1]:
24
- # messages.append({"role": "assistant", "content": val[1]})
25
-
26
- # messages.append({"role": "user", "content": message})
27
-
28
- # response = ""
29
-
30
- # for message in client.chat_completion(
31
- # messages,
32
- # max_tokens=max_tokens,
33
- # stream=True,
34
- # temperature=temperature,
35
- # top_p=top_p,
36
- # ):
37
- # token = message.choices[0].delta.content
38
-
39
- # response += token
40
- # yield response
41
-
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
- gr.load("cognitivecomputations/dolphin-2.9.4-llama3.1-8b").launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Initialize the pipeline for text generation
5
+ pipe = pipeline("text-generation", model="meta-llama/Llama-3.1-8B")
6
+
7
+ def respond(
8
+ message,
9
+ history: list[tuple[str, str]],
10
+ system_message,
11
+ max_tokens,
12
+ temperature,
13
+ top_p,
14
+ ):
15
+ # Prepare conversation history with system message
16
+ conversation_history = system_message + "\n"
17
+ for user_message, assistant_message in history:
18
+ if user_message:
19
+ conversation_history += f"User: {user_message}\n"
20
+ if assistant_message:
21
+ conversation_history += f"Assistant: {assistant_message}\n"
22
+ conversation_history += f"User: {message}\n"
23
+
24
+ # Generate response
25
+ response = ""
26
+ result = pipe(
27
+ conversation_history,
28
+ max_length=max_tokens,
29
+ do_sample=True,
30
+ temperature=temperature,
31
+ top_p=top_p
32
+ )[0]["generated_text"]
33
+
34
+ # Extract only the new assistant response
35
+ new_response = result.split(conversation_history)[-1].strip()
36
+ for token in new_response:
37
+ response += token
38
+ yield response
39
+
40
+ # Define Gradio interface
41
+ demo = gr.ChatInterface(
42
+ respond,
43
+ additional_inputs=[
44
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
45
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
46
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
47
+ gr.Slider(
48
+ minimum=0.1,
49
+ maximum=1.0,
50
+ value=0.95,
51
+ step=0.05,
52
+ label="Top-p (nucleus sampling)",
53
+ ),
54
+ ],
55
+ )
56
+
57
+ if __name__ == "__main__":
58
+ demo.launch()
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.25.2
 
 
1
+ huggingface_hub==0.25.2
2
+ transformers