slotab commited on
Commit
e60d240
·
verified ·
1 Parent(s): 6566b33

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import requests
3
+ from PIL import Image
4
+ import torch
5
+ import numpy
6
+
7
+ from transformers import DetrFeatureExtractor, DetrForSegmentation
8
+ from transformers.models.detr.feature_extraction_detr import rgb_to_id
9
+
10
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
11
+ image = Image.open(requests.get(url, stream=True).raw)
12
+
13
+ feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
14
+ model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
15
+
16
+ # prepare image for the model
17
+ inputs = feature_extractor(images=image, return_tensors="pt")
18
+
19
+ # forward pass
20
+ outputs = model(**inputs)
21
+
22
+ # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
23
+ processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
24
+ result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
25
+
26
+ # the segmentation is stored in a special-format png
27
+ panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
28
+ panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
29
+ # retrieve the ids corresponding to each mask
30
+ panoptic_seg_id = rgb_to_id(panoptic_seg)