Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# 1) κ°μ±λΆμ λͺ¨λΈ λΆλ¬μ€κΈ°
|
6 |
+
sentiment_analyzer = pipeline(
|
7 |
+
"sentiment-analysis",
|
8 |
+
model="monologg/koelectra-base-finetuned-nsmc"
|
9 |
+
)
|
10 |
+
|
11 |
+
st.title("μ΅λͺ
κ²μν κ°μ±λΆμ")
|
12 |
+
|
13 |
+
st.write("""
|
14 |
+
- CSV λλ Excel νμΌμ μ
λ‘λν΄μ£ΌμΈμ.
|
15 |
+
- 'content' μ΄(λλ μνλ μ΄)μ κ²μκΈ ν
μ€νΈκ° μλ€κ³ κ°μ ν©λλ€.
|
16 |
+
- μ
λ‘λ ν 'κ°μ±λΆμ μ€ν' λ²νΌμ λλ₯΄λ©΄, κ° κΈμ λν κΈμ /λΆμ λ μ΄λΈκ³Ό μ μκ° νμλ©λλ€.
|
17 |
+
""")
|
18 |
+
|
19 |
+
# 2) νμΌ μ
λ‘λ μμ ―
|
20 |
+
uploaded_file = st.file_uploader("κ²μκΈ νμΌ μ
λ‘λ (CSV λλ XLSX)", type=["csv", "xlsx"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# 3) CSV/XLSX νλ³ ν DataFrame λ‘λ
|
24 |
+
if uploaded_file.name.endswith(".csv"):
|
25 |
+
df = pd.read_csv(uploaded_file)
|
26 |
+
else: # xlsx
|
27 |
+
df = pd.read_excel(uploaded_file)
|
28 |
+
|
29 |
+
st.write("미리보기:")
|
30 |
+
st.dataframe(df.head()) # μ
λ‘λν λ°μ΄ν° μΌλΆ νμΈ
|
31 |
+
|
32 |
+
# 4) κ°μ±λΆμ μ€ν
|
33 |
+
if st.button("κ°μ±λΆμ μ€ν"):
|
34 |
+
results_label = []
|
35 |
+
results_score = []
|
36 |
+
|
37 |
+
for text in df["content"]: # 'content' μ΄μ κ²μκΈμ΄ μλ€κ³ κ°μ
|
38 |
+
# κ°μ±λΆμ
|
39 |
+
result = sentiment_analyzer(text)
|
40 |
+
label = result[0]['label'] # positive/negative
|
41 |
+
score = result[0]['score'] # μ λ’°λ(0~1)
|
42 |
+
results_label.append(label)
|
43 |
+
results_score.append(score)
|
44 |
+
|
45 |
+
df["sentiment_label"] = results_label
|
46 |
+
df["sentiment_score"] = results_score
|
47 |
+
|
48 |
+
# 5) κ²°κ³Ό νμ
|
49 |
+
st.write("κ°μ±λΆμ κ²°κ³Ό:")
|
50 |
+
st.dataframe(df)
|
51 |
+
|
52 |
+
st.write("μλ λ²νΌμ λλ¬ κ²°κ³Όλ₯Ό CSVλ‘ λ€μ΄λ‘λν μλ μμ΅λλ€.")
|
53 |
+
|
54 |
+
# 6) CSV λ€μ΄λ‘λ λ²νΌ
|
55 |
+
csv_data = df.to_csv(index=False).encode('utf-8-sig')
|
56 |
+
st.download_button(
|
57 |
+
label="κ²°κ³Ό CSV λ€μ΄λ‘λ",
|
58 |
+
data=csv_data,
|
59 |
+
file_name="sentiment_analysis_result.csv",
|
60 |
+
mime="text/csv"
|
61 |
+
)
|