Commit
·
2d851fe
1
Parent(s):
861c542
Update metadata
Browse files
app.py
CHANGED
@@ -5,6 +5,11 @@ from collections import OrderedDict
|
|
5 |
from sklearn.datasets import make_classification
|
6 |
from sklearn.ensemble import RandomForestClassifier
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
def do_train(random_state, n_samples, min_estimators, max_estimators):
|
9 |
RANDOM_STATE = random_state
|
10 |
|
@@ -96,19 +101,20 @@ with gr.Blocks() as demo:
|
|
96 |
</div>
|
97 |
''')
|
98 |
gr.Markdown(model_card)
|
99 |
-
gr.Markdown("Author: <a href=\"https://
|
100 |
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples")
|
101 |
random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random seed")
|
102 |
-
min_estimators = gr.Slider(minimum=5, maximum=300, step=5, value=15, label="Minimum
|
103 |
-
max_estimators = gr.Slider(minimum=
|
104 |
|
|
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
107 |
plot = gr.Plot()
|
108 |
-
|
109 |
n_samples.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
110 |
random_state.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
111 |
min_estimators.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
112 |
max_estimators.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
113 |
|
114 |
-
demo.launch()
|
|
|
5 |
from sklearn.datasets import make_classification
|
6 |
from sklearn.ensemble import RandomForestClassifier
|
7 |
|
8 |
+
def compare(number1, number2):
|
9 |
+
if number1 > number2:
|
10 |
+
number2 = number1
|
11 |
+
return number2
|
12 |
+
|
13 |
def do_train(random_state, n_samples, min_estimators, max_estimators):
|
14 |
RANDOM_STATE = random_state
|
15 |
|
|
|
101 |
</div>
|
102 |
''')
|
103 |
gr.Markdown(model_card)
|
104 |
+
gr.Markdown("Author: <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_ensemble_oob.html#sphx-glr-auto-examples-ensemble-plot-ensemble-oob-py\">scikit-learn</a>")
|
105 |
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples")
|
106 |
random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random seed")
|
107 |
+
min_estimators = gr.Slider(minimum=5, maximum=300, step=5, value=15, label="Minimum number of trees")
|
108 |
+
max_estimators = gr.Slider(minimum=5, maximum=300, step=5, value=150, label="Maximum number of trees")
|
109 |
|
110 |
+
min_estimators.change(compare, [min_estimators, max_estimators], max_estimators)
|
111 |
with gr.Row():
|
112 |
with gr.Column():
|
113 |
plot = gr.Plot()
|
114 |
+
|
115 |
n_samples.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
116 |
random_state.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
117 |
min_estimators.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
118 |
max_estimators.change(fn=do_train, inputs=[n_samples, random_state, min_estimators, max_estimators], outputs=[plot])
|
119 |
|
120 |
+
demo.queue().launch()
|