Update app.py
Browse files
app.py
CHANGED
@@ -17,17 +17,8 @@ def preprocess_image(image):
|
|
17 |
def segment_image(image, model_name="yolov8n-seg"):
|
18 |
"""
|
19 |
Perform instance segmentation on the input image using YOLO segmentation model.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
image (PIL.Image): Input image
|
23 |
-
model_name (str): Name of the YOLO segmentation model
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
numpy.ndarray: Segmentation mask with instance segmentation
|
27 |
"""
|
28 |
from ultralytics import YOLO
|
29 |
-
import numpy as np
|
30 |
-
import torch
|
31 |
|
32 |
# Load the YOLO segmentation model
|
33 |
model = YOLO(model_name)
|
@@ -35,76 +26,38 @@ def segment_image(image, model_name="yolov8n-seg"):
|
|
35 |
# Run inference
|
36 |
results = model(image)
|
37 |
|
38 |
-
# Create a blank mask
|
39 |
-
mask = np.zeros(image.size[
|
40 |
|
41 |
# Process each detected object
|
42 |
for result in results:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
if masks is not None:
|
47 |
-
# Convert masks to numpy and add to the overall mask
|
48 |
-
for single_mask in masks:
|
49 |
# Convert mask to numpy and resize if needed
|
50 |
mask_array = single_mask.data.cpu().numpy().squeeze()
|
51 |
mask_array = (mask_array > 0.5).astype(np.uint8)
|
52 |
|
53 |
-
#
|
54 |
if mask_array.shape != mask.shape:
|
55 |
-
from PIL import Image
|
56 |
mask_array = np.array(
|
57 |
Image.fromarray(mask_array).resize(
|
58 |
-
image.size[
|
59 |
Image.NEAREST
|
60 |
)
|
61 |
)
|
62 |
|
63 |
-
# Add this mask to the overall mask
|
64 |
mask = np.maximum(mask, mask_array)
|
65 |
|
66 |
return mask
|
67 |
|
68 |
-
def process_image(image, blur_type, sigma=15):
|
69 |
-
"""Process image based on blur type."""
|
70 |
-
# Preprocess image
|
71 |
-
pil_image = preprocess_image(image)
|
72 |
-
|
73 |
-
# Apply appropriate blur
|
74 |
-
if blur_type == "Gaussian Background Blur":
|
75 |
-
# Get segmentation mask
|
76 |
-
segmentation_mask = segment_image(pil_image)
|
77 |
-
|
78 |
-
# Convert to 3-channel mask
|
79 |
-
mask_3d = np.stack([segmentation_mask] * 3, axis=2)
|
80 |
-
|
81 |
-
# Apply Gaussian blur
|
82 |
-
image_array = np.array(pil_image)
|
83 |
-
blurred = np.zeros_like(image_array)
|
84 |
-
for channel in range(3):
|
85 |
-
blurred[:, :, channel] = gaussian_filter(image_array[:, :, channel], sigma=sigma)
|
86 |
-
|
87 |
-
# Combine original and blurred images
|
88 |
-
result = image_array * mask_3d + blurred * (1 - mask_3d)
|
89 |
-
result = Image.fromarray(result.astype(np.uint8))
|
90 |
-
|
91 |
-
elif blur_type == "Depth-Aware Lens Blur":
|
92 |
-
result = apply_depth_aware_blur(pil_image, max_sigma=sigma)
|
93 |
-
else:
|
94 |
-
result = pil_image
|
95 |
-
|
96 |
-
return result
|
97 |
-
|
98 |
def apply_gaussian_blur(image, sigma=15):
|
99 |
"""Apply Gaussian blur to the background."""
|
100 |
# Convert image to numpy array
|
101 |
image_array = np.array(image)
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
# Choose a prominent object class (e.g., person with ID 24 in Cityscapes)
|
107 |
-
foreground_mask = (segmentation_mask == 24).astype(np.uint8)
|
108 |
|
109 |
# Prepare blurred version
|
110 |
blurred = np.zeros_like(image_array)
|
@@ -128,48 +81,49 @@ def estimate_depth(image, model_name="depth-anything/Depth-Anything-V2-Small-hf"
|
|
128 |
depth_output = depth_estimator(image)
|
129 |
depth_map = np.array(depth_output["depth"])
|
130 |
|
131 |
-
# Normalize depth map
|
132 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
133 |
|
134 |
return depth_map
|
135 |
|
136 |
def apply_depth_aware_blur(image, max_sigma=10, min_sigma=0):
|
137 |
-
"""Apply depth-aware blur
|
138 |
-
# Estimate depth
|
139 |
depth_map = estimate_depth(image)
|
140 |
|
141 |
image_array = np.array(image)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
# Blend based on depth
|
160 |
-
for sigma in np.unique(sigmas):
|
161 |
-
if sigma > 0:
|
162 |
-
mask = (sigmas == sigma)
|
163 |
-
mask_3d = np.stack([mask] * 3, axis=2)
|
164 |
-
blurred += mask_3d * blur_stack[sigma]
|
165 |
-
else:
|
166 |
-
mask = (sigmas == 0)
|
167 |
-
mask_3d = np.stack([mask] * 3, axis=2)
|
168 |
-
blurred += mask_3d * image_array
|
169 |
-
|
170 |
-
return Image.fromarray(blurred.astype(np.uint8))
|
171 |
-
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Gradio Interface
|
175 |
def create_blur_app():
|
|
|
17 |
def segment_image(image, model_name="yolov8n-seg"):
|
18 |
"""
|
19 |
Perform instance segmentation on the input image using YOLO segmentation model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
"""
|
21 |
from ultralytics import YOLO
|
|
|
|
|
22 |
|
23 |
# Load the YOLO segmentation model
|
24 |
model = YOLO(model_name)
|
|
|
26 |
# Run inference
|
27 |
results = model(image)
|
28 |
|
29 |
+
# Create a blank mask (1 for foreground, 0 for background)
|
30 |
+
mask = np.zeros((image.size[1], image.size[0]), dtype=np.uint8)
|
31 |
|
32 |
# Process each detected object
|
33 |
for result in results:
|
34 |
+
if result.masks is not None:
|
35 |
+
for single_mask in result.masks:
|
|
|
|
|
|
|
|
|
36 |
# Convert mask to numpy and resize if needed
|
37 |
mask_array = single_mask.data.cpu().numpy().squeeze()
|
38 |
mask_array = (mask_array > 0.5).astype(np.uint8)
|
39 |
|
40 |
+
# Resize if needed
|
41 |
if mask_array.shape != mask.shape:
|
|
|
42 |
mask_array = np.array(
|
43 |
Image.fromarray(mask_array).resize(
|
44 |
+
(image.size[0], image.size[1]),
|
45 |
Image.NEAREST
|
46 |
)
|
47 |
)
|
48 |
|
49 |
+
# Add this mask to the overall mask (OR operation)
|
50 |
mask = np.maximum(mask, mask_array)
|
51 |
|
52 |
return mask
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def apply_gaussian_blur(image, sigma=15):
|
55 |
"""Apply Gaussian blur to the background."""
|
56 |
# Convert image to numpy array
|
57 |
image_array = np.array(image)
|
58 |
|
59 |
+
# Get segmentation mask (1 for foreground, 0 for background)
|
60 |
+
foreground_mask = segment_image(image)
|
|
|
|
|
|
|
61 |
|
62 |
# Prepare blurred version
|
63 |
blurred = np.zeros_like(image_array)
|
|
|
81 |
depth_output = depth_estimator(image)
|
82 |
depth_map = np.array(depth_output["depth"])
|
83 |
|
84 |
+
# Normalize depth map (0-1 where 1 is farthest)
|
85 |
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
86 |
|
87 |
return depth_map
|
88 |
|
89 |
def apply_depth_aware_blur(image, max_sigma=10, min_sigma=0):
|
90 |
+
"""Apply depth-aware blur with farther objects more blurred."""
|
91 |
+
# Estimate depth (1 = farthest)
|
92 |
depth_map = estimate_depth(image)
|
93 |
|
94 |
image_array = np.array(image)
|
95 |
+
|
96 |
+
# Create single blurred version at max sigma for efficiency
|
97 |
+
max_blurred = np.zeros_like(image_array, dtype=np.float32)
|
98 |
+
for channel in range(3):
|
99 |
+
max_blurred[:, :, channel] = gaussian_filter(
|
100 |
+
image_array[:, :, channel].astype(np.float32),
|
101 |
+
sigma=max_sigma
|
102 |
+
)
|
103 |
+
|
104 |
+
# Create 3-channel depth map for blending
|
105 |
+
depth_3d = np.stack([depth_map] * 3, axis=2)
|
106 |
+
|
107 |
+
# Blend between original (near) and blurred (far) based on depth
|
108 |
+
# Higher depth values (farther) get more blur
|
109 |
+
result = image_array * (1 - depth_3d) + max_blurred * depth_3d
|
110 |
+
|
111 |
+
return Image.fromarray(result.astype(np.uint8))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
def process_image(image, blur_type, sigma=15):
|
114 |
+
"""Process image based on blur type."""
|
115 |
+
# Preprocess image
|
116 |
+
pil_image = preprocess_image(image)
|
117 |
+
|
118 |
+
# Apply appropriate blur
|
119 |
+
if blur_type == "Gaussian Background Blur":
|
120 |
+
result = apply_gaussian_blur(pil_image, sigma)
|
121 |
+
elif blur_type == "Depth-Aware Lens Blur":
|
122 |
+
result = apply_depth_aware_blur(pil_image, max_sigma=sigma)
|
123 |
+
else:
|
124 |
+
result = pil_image
|
125 |
+
|
126 |
+
return result
|
127 |
|
128 |
# Gradio Interface
|
129 |
def create_blur_app():
|