Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import tensorflow as tf
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
class SpeechEmotionRecognizer:
|
8 |
+
def __init__(self, model_path):
|
9 |
+
self.model = tf.keras.models.load_model(model_path)
|
10 |
+
self.sample_rate = 22050
|
11 |
+
self.duration = 4 # seconds
|
12 |
+
self.emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad']
|
13 |
+
|
14 |
+
def extract_melspectrogram(self, audio_path):
|
15 |
+
try:
|
16 |
+
# Load and resample audio
|
17 |
+
audio, sr = librosa.load(audio_path, sr=self.sample_rate)
|
18 |
+
|
19 |
+
# Ensure audio is exactly 4 seconds
|
20 |
+
target_length = self.sample_rate * self.duration
|
21 |
+
if len(audio) < target_length:
|
22 |
+
audio = np.pad(audio, (0, int(target_length - len(audio))))
|
23 |
+
else:
|
24 |
+
audio = audio[:int(target_length)]
|
25 |
+
|
26 |
+
# Extract mel-spectrogram
|
27 |
+
mel_spec = librosa.feature.melspectrogram(
|
28 |
+
y=audio,
|
29 |
+
sr=self.sample_rate,
|
30 |
+
n_mels=128,
|
31 |
+
n_fft=2048,
|
32 |
+
hop_length=512,
|
33 |
+
win_length=2048,
|
34 |
+
fmax=8000
|
35 |
+
)
|
36 |
+
|
37 |
+
mel_spec_db = librosa.power_to_db(mel_spec + 1e-10, ref=np.max)
|
38 |
+
|
39 |
+
# Normalize
|
40 |
+
mean = np.mean(mel_spec_db)
|
41 |
+
std = np.std(mel_spec_db)
|
42 |
+
mel_spec_norm = (mel_spec_db - mean) / (std + 1e-10)
|
43 |
+
|
44 |
+
# Clip extreme values
|
45 |
+
mel_spec_norm = np.clip(mel_spec_norm, -5, 5)
|
46 |
+
|
47 |
+
# Ensure correct shape (128, 173)
|
48 |
+
target_length = 173
|
49 |
+
if mel_spec_norm.shape[1] > target_length:
|
50 |
+
mel_spec_norm = mel_spec_norm[:, :target_length]
|
51 |
+
elif mel_spec_norm.shape[1] < target_length:
|
52 |
+
pad_width = target_length - mel_spec_norm.shape[1]
|
53 |
+
mel_spec_norm = np.pad(mel_spec_norm, ((0, 0), (0, pad_width)), mode='constant')
|
54 |
+
|
55 |
+
return mel_spec_norm.reshape((1, 128, 173, 1))
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
raise gr.Error(f"Error processing audio: {str(e)}")
|
59 |
+
|
60 |
+
def predict_emotion(self, audio_path):
|
61 |
+
try:
|
62 |
+
# Extract features
|
63 |
+
mel_spec = self.extract_melspectrogram(audio_path)
|
64 |
+
|
65 |
+
# Make prediction
|
66 |
+
prediction = self.model.predict(mel_spec)
|
67 |
+
emotion_index = np.argmax(prediction)
|
68 |
+
confidence = float(prediction[0][emotion_index])
|
69 |
+
|
70 |
+
# Create results dictionary with confidence scores
|
71 |
+
results = {emotion: float(pred) for emotion, pred in zip(self.emotion_labels, prediction[0])}
|
72 |
+
|
73 |
+
return results
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
raise gr.Error(f"Prediction error: {str(e)}")
|
77 |
+
|
78 |
+
# Initialize the model
|
79 |
+
recognizer = SpeechEmotionRecognizer('final_model_conv2d_1K_1.keras')
|
80 |
+
|
81 |
+
# Define the Gradio interface
|
82 |
+
def process_audio(audio):
|
83 |
+
if audio is None:
|
84 |
+
raise gr.Error("Please provide an audio input")
|
85 |
+
|
86 |
+
results = recognizer.predict_emotion(audio)
|
87 |
+
return results
|
88 |
+
|
89 |
+
# Create the Gradio interface
|
90 |
+
demo = gr.Interface(
|
91 |
+
fn=process_audio,
|
92 |
+
inputs=[
|
93 |
+
gr.Audio(
|
94 |
+
source="microphone",
|
95 |
+
type="filepath",
|
96 |
+
label="Record audio (4 seconds)"
|
97 |
+
)
|
98 |
+
],
|
99 |
+
outputs=gr.Label(num_top_classes=6),
|
100 |
+
title="Speech Emotion Recognition",
|
101 |
+
description="Record a 4-second audio clip to detect the emotion in your voice.",
|
102 |
+
examples=None, # You can add example audio files here
|
103 |
+
theme=gr.themes.Base()
|
104 |
+
)
|
105 |
+
|
106 |
+
# Launch the app
|
107 |
+
if __name__ == "__main__":
|
108 |
+
demo.launch()
|