siro1 HF Staff commited on
Commit
0339ef7
·
1 Parent(s): de6fc01

Feat: claude stuff but works

Browse files
Files changed (4) hide show
  1. app.py +97 -4
  2. src/envs.py +11 -0
  3. src/result.py +46 -0
  4. src/retrieve_data.py +43 -0
app.py CHANGED
@@ -1,7 +1,100 @@
1
  import gradio as gr
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import asyncio
3
+ import time
4
+ import threading
5
+ from src.retrieve_data import populate_lb_data
6
 
7
+ leaderboard_data = {}
 
8
 
9
+
10
+ async def fetch_data():
11
+ """Fetch the leaderboard data asynchronously"""
12
+ global leaderboard_data
13
+ try:
14
+ data = await populate_lb_data()
15
+ leaderboard_data = data
16
+ return True
17
+ except Exception as e:
18
+ print(f"Error fetching data: {e}")
19
+ return False
20
+
21
+
22
+ def background_update():
23
+ """Background thread function to update data every 5 minutes"""
24
+ while True:
25
+ print("Updating leaderboard data...")
26
+ asyncio.run(fetch_data())
27
+ time.sleep(300) # 5 minutes
28
+
29
+
30
+ def create_table_for_lb(lb_name):
31
+ """Create a formatted table for a specific leaderboard and GPU"""
32
+ global leaderboard_data
33
+
34
+ lb_data = leaderboard_data[lb_name]
35
+
36
+ headers = ["Rank", "Submission Name", "User ID", "Score", "Date"]
37
+
38
+ rows = []
39
+ for i, result in enumerate(lb_data.results, 1):
40
+ rows.append(
41
+ [
42
+ i,
43
+ result.submission_name,
44
+ result.user_id,
45
+ f"{float(result.submission_score):.4f}",
46
+ result.submission_time,
47
+ ]
48
+ )
49
+
50
+ return gr.Dataframe(
51
+ headers=headers,
52
+ datatype=["number", "str", "str", "str", "str"],
53
+ value=rows,
54
+ interactive=False,
55
+ )
56
+
57
+
58
+ def refresh_ui():
59
+ """Force refresh the UI with latest data"""
60
+ asyncio.run(fetch_data())
61
+ return "Data refreshed!"
62
+
63
+
64
+ def build_ui():
65
+ """Build the Gradio UI"""
66
+ global leaderboard_data
67
+
68
+ with gr.Blocks(title="ML Leaderboards") as app:
69
+ gr.Markdown("# Machine Learning Leaderboards")
70
+
71
+ with gr.Row():
72
+ refresh_btn = gr.Button("Refresh Data")
73
+ status = gr.Textbox(label="Status", value="Ready")
74
+
75
+ refresh_btn.click(fn=refresh_ui, outputs=status)
76
+
77
+ # Initial data fetch
78
+ asyncio.run(fetch_data())
79
+
80
+ # Create tabs for each leaderboard
81
+ if leaderboard_data:
82
+ with gr.Tabs():
83
+ for lb_name, lb_data in leaderboard_data.items():
84
+ with gr.Tab(lb_name):
85
+ gr.Markdown(f"## {lb_name} - {lb_data.gpu}")
86
+ create_table_for_lb(lb_name)
87
+ else:
88
+ gr.Markdown("No leaderboard data available. Please refresh.")
89
+
90
+ return app
91
+
92
+
93
+ if __name__ == "__main__":
94
+ # Start the background update thread
95
+ update_thread = threading.Thread(target=background_update, daemon=True)
96
+ update_thread.start()
97
+
98
+ # Launch the Gradio app
99
+ app = build_ui()
100
+ app.launch()
src/envs.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ API_URL = os.getenv("API_URL", "http://localhost:8000")
5
+ OWNER = "siro1"
6
+
7
+ QUEUE_REPO = f"{OWNER}/requests"
8
+ RESULTS_REPO = f"{OWNER}/results"
9
+
10
+ CACHE_PATH = os.getenv("HF_HOME", ".")
11
+
src/result.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from datetime import datetime
3
+ import json
4
+
5
+
6
+ @dataclass(frozen=True, slots=True)
7
+ class Result:
8
+ submission_name: str
9
+ submission_time: datetime
10
+ submission_score: float
11
+ user_id: str
12
+ rank: int
13
+
14
+ @classmethod
15
+ def from_dict(cls, data: dict) -> "Result":
16
+ return cls(
17
+ submission_name=data["submission_name"],
18
+ submission_time=datetime.fromisoformat(data["submission_time"]),
19
+ submission_score=data["submission_score"],
20
+ user_id=data["user_id"],
21
+ rank=data["rank"],
22
+ )
23
+
24
+ @classmethod
25
+ def from_json(cls, json_path: str) -> "Result":
26
+ with open(json_path, "r") as f:
27
+ data = json.load(f)
28
+ return cls.from_dict(data)
29
+
30
+ def to_dict(self) -> dict:
31
+ return {
32
+ "filename": self.filename,
33
+ "score": self.score,
34
+ "user_name": self.user_name,
35
+ "created_at": self.created_at.isoformat(),
36
+ }
37
+
38
+
39
+ @dataclass
40
+ class LbData:
41
+ name: str
42
+ gpu: str
43
+ results: list[Result] = field(default_factory=list)
44
+
45
+ def add_result(self, result: Result):
46
+ self.results.append(result)
src/retrieve_data.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+
3
+ from httpx import AsyncClient
4
+
5
+ from src.envs import API_URL
6
+ from src.result import LbData, Result
7
+
8
+
9
+ async def get_leaderboards() -> list[str]:
10
+ async with AsyncClient() as client:
11
+ response = await client.get(f"{API_URL}/leaderboards")
12
+ response.raise_for_status()
13
+ return [lb["name"] for lb in response.json()]
14
+
15
+
16
+ async def get_lb_gpus(lb_name: str) -> list[str]:
17
+ async with AsyncClient() as client:
18
+ response = await client.get(f"{API_URL}/gpus/{lb_name}")
19
+ response.raise_for_status()
20
+ return response.json()
21
+
22
+
23
+ async def get_submissions(lb_name: str, gpu: str) -> LbData:
24
+ async with AsyncClient() as client:
25
+ response = await client.get(f"{API_URL}/submissions/{lb_name}/{gpu}")
26
+ response.raise_for_status()
27
+ return LbData(
28
+ gpu=gpu,
29
+ name=lb_name,
30
+ results=[Result.from_dict(result) for result in response.json()],
31
+ )
32
+
33
+
34
+ async def populate_lb_data():
35
+ leaderboards: dict[str, LbData] = {}
36
+ lb_names = await get_leaderboards()
37
+ for lb_name in lb_names:
38
+ gpus = await get_lb_gpus(lb_name)
39
+ for gpu in gpus:
40
+ lb_data = await get_submissions(lb_name, gpu)
41
+ leaderboards[f"{lb_name}_{gpu}"] = lb_data
42
+
43
+ return leaderboards