Spaces:
Sleeping
Sleeping
Feat: claude stuff but works
Browse files- app.py +97 -4
- src/envs.py +11 -0
- src/result.py +46 -0
- src/retrieve_data.py +43 -0
app.py
CHANGED
@@ -1,7 +1,100 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
import time
|
4 |
+
import threading
|
5 |
+
from src.retrieve_data import populate_lb_data
|
6 |
|
7 |
+
leaderboard_data = {}
|
|
|
8 |
|
9 |
+
|
10 |
+
async def fetch_data():
|
11 |
+
"""Fetch the leaderboard data asynchronously"""
|
12 |
+
global leaderboard_data
|
13 |
+
try:
|
14 |
+
data = await populate_lb_data()
|
15 |
+
leaderboard_data = data
|
16 |
+
return True
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Error fetching data: {e}")
|
19 |
+
return False
|
20 |
+
|
21 |
+
|
22 |
+
def background_update():
|
23 |
+
"""Background thread function to update data every 5 minutes"""
|
24 |
+
while True:
|
25 |
+
print("Updating leaderboard data...")
|
26 |
+
asyncio.run(fetch_data())
|
27 |
+
time.sleep(300) # 5 minutes
|
28 |
+
|
29 |
+
|
30 |
+
def create_table_for_lb(lb_name):
|
31 |
+
"""Create a formatted table for a specific leaderboard and GPU"""
|
32 |
+
global leaderboard_data
|
33 |
+
|
34 |
+
lb_data = leaderboard_data[lb_name]
|
35 |
+
|
36 |
+
headers = ["Rank", "Submission Name", "User ID", "Score", "Date"]
|
37 |
+
|
38 |
+
rows = []
|
39 |
+
for i, result in enumerate(lb_data.results, 1):
|
40 |
+
rows.append(
|
41 |
+
[
|
42 |
+
i,
|
43 |
+
result.submission_name,
|
44 |
+
result.user_id,
|
45 |
+
f"{float(result.submission_score):.4f}",
|
46 |
+
result.submission_time,
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
return gr.Dataframe(
|
51 |
+
headers=headers,
|
52 |
+
datatype=["number", "str", "str", "str", "str"],
|
53 |
+
value=rows,
|
54 |
+
interactive=False,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def refresh_ui():
|
59 |
+
"""Force refresh the UI with latest data"""
|
60 |
+
asyncio.run(fetch_data())
|
61 |
+
return "Data refreshed!"
|
62 |
+
|
63 |
+
|
64 |
+
def build_ui():
|
65 |
+
"""Build the Gradio UI"""
|
66 |
+
global leaderboard_data
|
67 |
+
|
68 |
+
with gr.Blocks(title="ML Leaderboards") as app:
|
69 |
+
gr.Markdown("# Machine Learning Leaderboards")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
refresh_btn = gr.Button("Refresh Data")
|
73 |
+
status = gr.Textbox(label="Status", value="Ready")
|
74 |
+
|
75 |
+
refresh_btn.click(fn=refresh_ui, outputs=status)
|
76 |
+
|
77 |
+
# Initial data fetch
|
78 |
+
asyncio.run(fetch_data())
|
79 |
+
|
80 |
+
# Create tabs for each leaderboard
|
81 |
+
if leaderboard_data:
|
82 |
+
with gr.Tabs():
|
83 |
+
for lb_name, lb_data in leaderboard_data.items():
|
84 |
+
with gr.Tab(lb_name):
|
85 |
+
gr.Markdown(f"## {lb_name} - {lb_data.gpu}")
|
86 |
+
create_table_for_lb(lb_name)
|
87 |
+
else:
|
88 |
+
gr.Markdown("No leaderboard data available. Please refresh.")
|
89 |
+
|
90 |
+
return app
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
# Start the background update thread
|
95 |
+
update_thread = threading.Thread(target=background_update, daemon=True)
|
96 |
+
update_thread.start()
|
97 |
+
|
98 |
+
# Launch the Gradio app
|
99 |
+
app = build_ui()
|
100 |
+
app.launch()
|
src/envs.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
API_URL = os.getenv("API_URL", "http://localhost:8000")
|
5 |
+
OWNER = "siro1"
|
6 |
+
|
7 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
8 |
+
RESULTS_REPO = f"{OWNER}/results"
|
9 |
+
|
10 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
11 |
+
|
src/result.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from datetime import datetime
|
3 |
+
import json
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass(frozen=True, slots=True)
|
7 |
+
class Result:
|
8 |
+
submission_name: str
|
9 |
+
submission_time: datetime
|
10 |
+
submission_score: float
|
11 |
+
user_id: str
|
12 |
+
rank: int
|
13 |
+
|
14 |
+
@classmethod
|
15 |
+
def from_dict(cls, data: dict) -> "Result":
|
16 |
+
return cls(
|
17 |
+
submission_name=data["submission_name"],
|
18 |
+
submission_time=datetime.fromisoformat(data["submission_time"]),
|
19 |
+
submission_score=data["submission_score"],
|
20 |
+
user_id=data["user_id"],
|
21 |
+
rank=data["rank"],
|
22 |
+
)
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def from_json(cls, json_path: str) -> "Result":
|
26 |
+
with open(json_path, "r") as f:
|
27 |
+
data = json.load(f)
|
28 |
+
return cls.from_dict(data)
|
29 |
+
|
30 |
+
def to_dict(self) -> dict:
|
31 |
+
return {
|
32 |
+
"filename": self.filename,
|
33 |
+
"score": self.score,
|
34 |
+
"user_name": self.user_name,
|
35 |
+
"created_at": self.created_at.isoformat(),
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class LbData:
|
41 |
+
name: str
|
42 |
+
gpu: str
|
43 |
+
results: list[Result] = field(default_factory=list)
|
44 |
+
|
45 |
+
def add_result(self, result: Result):
|
46 |
+
self.results.append(result)
|
src/retrieve_data.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
|
3 |
+
from httpx import AsyncClient
|
4 |
+
|
5 |
+
from src.envs import API_URL
|
6 |
+
from src.result import LbData, Result
|
7 |
+
|
8 |
+
|
9 |
+
async def get_leaderboards() -> list[str]:
|
10 |
+
async with AsyncClient() as client:
|
11 |
+
response = await client.get(f"{API_URL}/leaderboards")
|
12 |
+
response.raise_for_status()
|
13 |
+
return [lb["name"] for lb in response.json()]
|
14 |
+
|
15 |
+
|
16 |
+
async def get_lb_gpus(lb_name: str) -> list[str]:
|
17 |
+
async with AsyncClient() as client:
|
18 |
+
response = await client.get(f"{API_URL}/gpus/{lb_name}")
|
19 |
+
response.raise_for_status()
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
|
23 |
+
async def get_submissions(lb_name: str, gpu: str) -> LbData:
|
24 |
+
async with AsyncClient() as client:
|
25 |
+
response = await client.get(f"{API_URL}/submissions/{lb_name}/{gpu}")
|
26 |
+
response.raise_for_status()
|
27 |
+
return LbData(
|
28 |
+
gpu=gpu,
|
29 |
+
name=lb_name,
|
30 |
+
results=[Result.from_dict(result) for result in response.json()],
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
async def populate_lb_data():
|
35 |
+
leaderboards: dict[str, LbData] = {}
|
36 |
+
lb_names = await get_leaderboards()
|
37 |
+
for lb_name in lb_names:
|
38 |
+
gpus = await get_lb_gpus(lb_name)
|
39 |
+
for gpu in gpus:
|
40 |
+
lb_data = await get_submissions(lb_name, gpu)
|
41 |
+
leaderboards[f"{lb_name}_{gpu}"] = lb_data
|
42 |
+
|
43 |
+
return leaderboards
|