File size: 5,899 Bytes
ac6a4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Define the configurable parameters for the agent supervisor system."""

from __future__ import annotations

from dataclasses import dataclass, field, fields
from typing import Annotated

from langchain_core.runnables import ensure_config
from langgraph.config import get_config

from react_agent import prompts


@dataclass(kw_only=True)
class Configuration:
    """The configuration for the agent supervisor system."""

    # Supervisor configuration
    supervisor_prompt: str = field(
        default=prompts.SUPERVISOR_PROMPT,
        metadata={
            "description": "The system prompt for the supervisor agent. "
            "This prompt guides how the supervisor delegates tasks to worker agents."
        },
    )
    
    # Planner configuration
    planner_prompt: str = field(
        default=prompts.PLANNER_PROMPT,
        metadata={
            "description": "The system prompt for the planner agent. "
            "This prompt guides how the planner creates structured plans."
        },
    )
    
    # Critic configuration
    critic_prompt: str = field(
        default=prompts.CRITIC_PROMPT,
        metadata={
            "description": "The system prompt for the critic agent. "
            "This prompt guides how the critic evaluates answers."
        },
    )
    
    # Worker agents configuration
    researcher_prompt: str = field(
        default=prompts.RESEARCHER_PROMPT,
        metadata={
            "description": "The system prompt for the researcher agent. "
            "This prompt defines the researcher's capabilities and limitations."
        },
    )
    
    coder_prompt: str = field(
        default=prompts.CODER_PROMPT,
        metadata={
            "description": "The system prompt for the coder agent. "
            "This prompt defines the coder's capabilities and approach to programming tasks."
        },
    )
    
    # Shared configuration
    system_prompt: str = field(
        default=prompts.SYSTEM_PROMPT,
        metadata={
            "description": "Legacy system prompt for backward compatibility. "
            "This prompt is used when running the agent in non-supervisor mode."
        },
    )

    # LLM Configuration - Default model for backward compatibility
    model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="openai/gpt-4o-mini",
        metadata={
            "description": "The default large language model used by the agents (provider/model_name)."
        },
    )
    
    # Model for the researcher (information gathering) - use powerful model
    researcher_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="openai/gpt-4o-mini",
        metadata={
            "description": "The model used by the researcher agent for gathering information (provider/model_name)."
        },
    )
    
    # Model for the coder (code execution) - use Claude Sonnet
    coder_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="anthropic/claude-3-5-sonnet-20240620",
        metadata={
            "description": "The model used by the coder agent for programming tasks (provider/model_name)."
        },
    )
    
    # Model for lightweight reasoning tasks (planner, supervisor, critic)
    planner_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="google_genai/gemini-1.5-flash",
        metadata={
            "description": "The lightweight reasoning model used by the planner, supervisor, and critic (provider/model_name)."
        },
    )
    
    # Same model used for supervisor and critic (points to planner_model)
    supervisor_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="google_genai/gemini-1.5-flash",
        metadata={
            "description": "The model used by the supervisor for routing (provider/model_name)."
        },
    )
    
    critic_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="openai/gpt-4o-mini",
        metadata={
            "description": "The model used by the critic for evaluation (provider/model_name)."
        },
    )
    
    # Model for final answer generation - using Claude for precise formatting
    final_answer_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
        default="anthropic/claude-3-5-sonnet-20240620",
        metadata={
            "description": "The model used for generating the final answers in GAIA benchmark format (provider/model_name)."
        },
    )

    # Tool Configuration
    max_search_results: int = field(
        default=5,
        metadata={
            "description": "The maximum number of search results to return."
        },
    )
    
    # Execution Configuration
    recursion_limit: int = field(
        default=50,
        metadata={
            "description": "Maximum number of recursion steps allowed in the LangGraph execution."
        },
    )
    
    max_iterations: int = field(
        default=12,
        metadata={
            "description": "Maximum number of iterations allowed to prevent infinite loops."
        },
    )
    
    allow_agent_to_extract_answers: bool = field(
        default=True,
        metadata={
            "description": "Whether to allow the agent to extract answers from context when formatting fails."
        },
    )

    @classmethod
    def from_context(cls) -> Configuration:
        """Create a Configuration instance from a RunnableConfig object."""
        try:
            config = get_config()
        except RuntimeError:
            config = None
        config = ensure_config(config)
        configurable = config.get("configurable") or {}
        _fields = {f.name for f in fields(cls) if f.init}
        return cls(**{k: v for k, v in configurable.items() if k in _fields})