sims2k's picture
Update app.py
8143c22 verified
raw
history blame
7.57 kB
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
import os
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
@tool
def my_cutom_tool(arg1: str, arg2: int) -> str:
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
Returns:
A string stating the current local time in the specified timezone.
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
# --- Helper functions for Spotify and environmental data ---
def fetch_spotify_access_token():
url = "https://accounts.spotify.com/api/token"
headers = {"Content-Type": "application/x-www-form-urlencoded"}
data = {
"grant_type": "client_credentials",
"client_id": os.getenv("SPOTIFY_CLIENT_ID"),
"client_secret": os.getenv("SPOTIFY_CLIENT_SECRET")
}
response = requests.post(url, headers=headers, data=data)
return response.json().get("access_token")
def fetch_user_location_data():
url = "http://ip-api.com/json/"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("city"), data.get("country"), data.get("timezone")
return None, None, None
def fetch_weather_for_city(city: str):
WEATHER_API_KEY = os.getenv("WEATHER_API_KEY")
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data["weather"][0]["main"]
return None
def map_mood_to_params(mood: str, weather_condition: str = None) -> dict:
# Base mapping of mood words to Spotify's target parameters and seed genre
default_mappings = {
"happy": {"target_valence": 0.9, "target_energy": 0.8, "seed_genre": "pop"},
"sad": {"target_valence": 0.2, "target_energy": 0.3, "seed_genre": "acoustic"},
"energetic": {"target_valence": 0.7, "target_energy": 0.9, "seed_genre": "work-out"},
"chill": {"target_valence": 0.6, "target_energy": 0.4, "seed_genre": "chill"}
}
mapping = default_mappings.get(mood.lower(), {"target_valence": 0.5, "target_energy": 0.5, "seed_genre": "pop"})
# Adjust parameters based on weather conditions if provided
if weather_condition:
weather = weather_condition.lower()
if weather in ["rain", "thunderstorm"]:
mapping["target_energy"] = max(mapping["target_energy"] - 0.2, 0.0)
elif weather in ["clear"]:
mapping["target_energy"] = min(mapping["target_energy"] + 0.1, 1.0)
return mapping
# --- Environmental Tools ---
@tool
def get_user_location() -> str:
"""Fetches the user's location using ip-api.com.
Returns:
A string containing the city, country, and timezone, or an error message.
"""
city, country, timezone = fetch_user_location_data()
if city and country and timezone:
return f"City: {city}, Country: {country}, Timezone: {timezone}"
return "Error fetching location."
@tool
def get_weather(city: str) -> str:
"""Fetches weather data for a given city using OpenWeatherMap API.
Args:
city: The name of the city.
Returns:
A string describing the current weather in the specified city, or an error message.
"""
weather = fetch_weather_for_city(city)
if weather:
return f"Current weather in {city} is {weather}."
return "Error fetching weather data."
@tool
def get_songs_by_mood(mood: str, local: bool = False) -> str:
"""Fetches a playlist of songs that fits the user's mood using Spotify's Recommendations API.
Args:
mood: A string representing the desired mood (e.g., "happy", "sad", "energetic", "chill").
local: A boolean flag. If True, the tool fetches the user's location and current weather
to adjust the mood mapping accordingly.
Returns:
A string containing a playlist of songs (each on a new line) that matches the mood parameters.
Additional Details:
Mood is expressed in terms of target_valence and target_energy (energy replaces arousal).
The tool internally maps mood words to corresponding Spotify parameters. For example:
- "happy": target_valence ~ 0.9, target_energy ~ 0.8, seed_genre "pop"
- "sad": target_valence ~ 0.2, target_energy ~ 0.3, seed_genre "acoustic"
- "energetic": target_valence ~ 0.7, target_energy ~ 0.9, seed_genre "work-out"
- "chill": target_valence ~ 0.6, target_energy ~ 0.4, seed_genre "chill"
If 'local' is True, the tool uses the user's location and weather to adjust the mapping
(e.g., reducing energy on rainy days).
"""
weather_condition = None
if local:
city, country, timezone = fetch_user_location_data()
if not city:
return "Error: Unable to determine user location."
weather_condition = fetch_weather_for_city(city)
mapping = map_mood_to_params(mood, weather_condition)
access_token = fetch_spotify_access_token()
if not access_token:
return "Error: Unable to retrieve Spotify access token."
params = {
"seed_genres": mapping["seed_genre"],
"target_valence": mapping["target_valence"],
"target_energy": mapping["target_energy"],
"limit": 10
}
url = "https://api.spotify.com/v1/recommendations"
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
tracks = response.json().get("tracks", [])
if not tracks:
return "No tracks found for the specified mood."
playlist = [f"{track['name']} - {track['artists'][0]['name']}" for track in tracks]
return "\n".join(playlist)
return f"Error: {response.json()}"
final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)
# Patch: Ensure last_input_token_count is initialized to 0 if not already set.
if model.last_input_token_count is None:
model.last_input_token_count = 0
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
my_cutom_tool,
get_current_time_in_timezone,
get_user_location,
get_weather,
get_songs_by_mood
],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()