Spaces:
Sleeping
Sleeping
add server
Browse files- classifiers.py +0 -267
- requirements.txt +95 -9
- server.py +64 -0
- test_server.py +43 -0
classifiers.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
-
from sklearn.cluster import KMeans
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
import random
|
7 |
-
import json
|
8 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
-
from typing import List, Dict, Any, Optional
|
10 |
-
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
|
11 |
-
|
12 |
-
|
13 |
-
class BaseClassifier:
|
14 |
-
"""Base class for text classifiers"""
|
15 |
-
|
16 |
-
def __init__(self):
|
17 |
-
pass
|
18 |
-
|
19 |
-
def classify(self, texts, categories=None):
|
20 |
-
"""
|
21 |
-
Classify a list of texts into categories
|
22 |
-
|
23 |
-
Args:
|
24 |
-
texts (list): List of text strings to classify
|
25 |
-
categories (list, optional): List of category names. If None, categories will be auto-detected
|
26 |
-
|
27 |
-
Returns:
|
28 |
-
list: List of classification results with categories, confidence scores, and explanations
|
29 |
-
"""
|
30 |
-
raise NotImplementedError("Subclasses must implement this method")
|
31 |
-
|
32 |
-
def _generate_default_categories(self, texts, num_clusters=5):
|
33 |
-
"""
|
34 |
-
Generate default categories based on text clustering
|
35 |
-
|
36 |
-
Args:
|
37 |
-
texts (list): List of text strings
|
38 |
-
num_clusters (int): Number of clusters to generate
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
list: List of category names
|
42 |
-
"""
|
43 |
-
# Simple implementation - in real system this would be more sophisticated
|
44 |
-
default_categories = [f"Category {i+1}" for i in range(num_clusters)]
|
45 |
-
return default_categories
|
46 |
-
|
47 |
-
|
48 |
-
class TFIDFClassifier(BaseClassifier):
|
49 |
-
"""Classifier using TF-IDF and clustering for fast classification"""
|
50 |
-
|
51 |
-
def __init__(self):
|
52 |
-
super().__init__()
|
53 |
-
self.vectorizer = TfidfVectorizer(
|
54 |
-
max_features=1000, stop_words="english", ngram_range=(1, 2)
|
55 |
-
)
|
56 |
-
self.model = None
|
57 |
-
self.feature_names = None
|
58 |
-
self.categories = None
|
59 |
-
self.centroids = None
|
60 |
-
|
61 |
-
def classify(self, texts, categories=None):
|
62 |
-
"""Classify texts using TF-IDF and clustering"""
|
63 |
-
# Vectorize the texts
|
64 |
-
X = self.vectorizer.fit_transform(texts)
|
65 |
-
self.feature_names = self.vectorizer.get_feature_names_out()
|
66 |
-
|
67 |
-
# Auto-detect categories if not provided
|
68 |
-
if not categories:
|
69 |
-
num_clusters = min(5, len(texts)) # Don't create more clusters than texts
|
70 |
-
self.categories = self._generate_default_categories(texts, num_clusters)
|
71 |
-
else:
|
72 |
-
self.categories = categories
|
73 |
-
num_clusters = len(categories)
|
74 |
-
|
75 |
-
# Cluster the texts
|
76 |
-
self.model = KMeans(n_clusters=num_clusters, random_state=42)
|
77 |
-
clusters = self.model.fit_predict(X)
|
78 |
-
self.centroids = self.model.cluster_centers_
|
79 |
-
|
80 |
-
# Calculate distances to centroids for confidence
|
81 |
-
distances = self._calculate_distances(X)
|
82 |
-
|
83 |
-
# Prepare results
|
84 |
-
results = []
|
85 |
-
for i, text in enumerate(texts):
|
86 |
-
cluster_idx = clusters[i]
|
87 |
-
|
88 |
-
# Calculate confidence (inverse of distance, normalized)
|
89 |
-
confidence = self._calculate_confidence(distances[i])
|
90 |
-
|
91 |
-
# Create explanation
|
92 |
-
explanation = self._generate_explanation(X[i], cluster_idx)
|
93 |
-
|
94 |
-
results.append(
|
95 |
-
{
|
96 |
-
"category": self.categories[cluster_idx],
|
97 |
-
"confidence": confidence,
|
98 |
-
"explanation": explanation,
|
99 |
-
}
|
100 |
-
)
|
101 |
-
|
102 |
-
return results
|
103 |
-
|
104 |
-
def _calculate_distances(self, X):
|
105 |
-
"""Calculate distances from each point to each centroid"""
|
106 |
-
return np.sqrt(
|
107 |
-
(
|
108 |
-
(X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2
|
109 |
-
).sum(axis=2)
|
110 |
-
)
|
111 |
-
|
112 |
-
def _calculate_confidence(self, distances):
|
113 |
-
"""Convert distances to confidence scores (0-100)"""
|
114 |
-
min_dist = np.min(distances)
|
115 |
-
max_dist = np.max(distances)
|
116 |
-
|
117 |
-
# Normalize and invert (smaller distance = higher confidence)
|
118 |
-
if max_dist == min_dist:
|
119 |
-
return 70 # Default mid-range confidence when all distances are equal
|
120 |
-
|
121 |
-
normalized_dist = (distances - min_dist) / (max_dist - min_dist)
|
122 |
-
min_normalized = np.min(normalized_dist)
|
123 |
-
|
124 |
-
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
|
125 |
-
confidence = 100 - (min_normalized * 50)
|
126 |
-
return round(confidence, 1)
|
127 |
-
|
128 |
-
def _generate_explanation(self, text_vector, cluster_idx):
|
129 |
-
"""Generate an explanation for the classification"""
|
130 |
-
# Get the most important features for this cluster
|
131 |
-
centroid = self.centroids[cluster_idx]
|
132 |
-
|
133 |
-
# Get indices of top features for this text
|
134 |
-
text_array = text_vector.toarray()[0]
|
135 |
-
top_indices = text_array.argsort()[-5:][::-1]
|
136 |
-
|
137 |
-
# Get the feature names for these indices
|
138 |
-
top_features = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
|
139 |
-
|
140 |
-
if not top_features:
|
141 |
-
return "No significant features identified for this classification."
|
142 |
-
|
143 |
-
explanation = f"Classification based on key terms: {', '.join(top_features)}"
|
144 |
-
return explanation
|
145 |
-
|
146 |
-
|
147 |
-
class LLMClassifier(BaseClassifier):
|
148 |
-
"""Classifier using a Large Language Model for more accurate but slower classification"""
|
149 |
-
|
150 |
-
def __init__(self, client, model="gpt-3.5-turbo"):
|
151 |
-
super().__init__()
|
152 |
-
self.client = client
|
153 |
-
self.model = model
|
154 |
-
|
155 |
-
def classify(
|
156 |
-
self, texts: List[str], categories: Optional[List[str]] = None
|
157 |
-
) -> List[Dict[str, Any]]:
|
158 |
-
"""Classify texts using an LLM with parallel processing"""
|
159 |
-
if not categories:
|
160 |
-
# First, use LLM to generate appropriate categories
|
161 |
-
categories = self._suggest_categories(texts)
|
162 |
-
|
163 |
-
# Process texts in parallel
|
164 |
-
with ThreadPoolExecutor(max_workers=10) as executor:
|
165 |
-
# Submit all tasks with their original indices
|
166 |
-
future_to_index = {
|
167 |
-
executor.submit(self._classify_text, text, categories): idx
|
168 |
-
for idx, text in enumerate(texts)
|
169 |
-
}
|
170 |
-
|
171 |
-
# Initialize results list with None values
|
172 |
-
results = [None] * len(texts)
|
173 |
-
|
174 |
-
# Collect results as they complete
|
175 |
-
for future in as_completed(future_to_index):
|
176 |
-
original_idx = future_to_index[future]
|
177 |
-
try:
|
178 |
-
result = future.result()
|
179 |
-
results[original_idx] = result
|
180 |
-
except Exception as e:
|
181 |
-
print(f"Error processing text: {str(e)}")
|
182 |
-
results[original_idx] = {
|
183 |
-
"category": categories[0],
|
184 |
-
"confidence": 50,
|
185 |
-
"explanation": f"Error during classification: {str(e)}",
|
186 |
-
}
|
187 |
-
|
188 |
-
return results
|
189 |
-
|
190 |
-
def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]:
|
191 |
-
"""Use LLM to suggest appropriate categories for the dataset"""
|
192 |
-
# Take a sample of texts to avoid token limitations
|
193 |
-
if len(texts) > sample_size:
|
194 |
-
sample_texts = random.sample(texts, sample_size)
|
195 |
-
else:
|
196 |
-
sample_texts = texts
|
197 |
-
|
198 |
-
prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts))
|
199 |
-
|
200 |
-
try:
|
201 |
-
response = self.client.chat.completions.create(
|
202 |
-
model=self.model,
|
203 |
-
messages=[{"role": "user", "content": prompt}],
|
204 |
-
temperature=0.2,
|
205 |
-
max_tokens=100,
|
206 |
-
)
|
207 |
-
|
208 |
-
# Parse response to get categories
|
209 |
-
categories_text = response.choices[0].message.content.strip()
|
210 |
-
categories = [cat.strip() for cat in categories_text.split(",")]
|
211 |
-
|
212 |
-
return categories
|
213 |
-
except Exception as e:
|
214 |
-
# Fallback to default categories on error
|
215 |
-
print(f"Error suggesting categories: {str(e)}")
|
216 |
-
return self._generate_default_categories(texts)
|
217 |
-
|
218 |
-
def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]:
|
219 |
-
"""Use LLM to classify a single text"""
|
220 |
-
prompt = TEXT_CLASSIFICATION_PROMPT.format(
|
221 |
-
categories=", ".join(categories), text=text
|
222 |
-
)
|
223 |
-
|
224 |
-
try:
|
225 |
-
response = self.client.chat.completions.create(
|
226 |
-
model=self.model,
|
227 |
-
messages=[{"role": "user", "content": prompt}],
|
228 |
-
temperature=0,
|
229 |
-
max_tokens=200,
|
230 |
-
)
|
231 |
-
|
232 |
-
# Parse JSON response
|
233 |
-
response_text = response.choices[0].message.content.strip()
|
234 |
-
|
235 |
-
result = json.loads(response_text)
|
236 |
-
# Ensure all required fields are present
|
237 |
-
if not all(k in result for k in ["category", "confidence", "explanation"]):
|
238 |
-
raise ValueError("Missing required fields in LLM response")
|
239 |
-
|
240 |
-
# Validate category is in the list
|
241 |
-
if result["category"] not in categories:
|
242 |
-
result["category"] = categories[
|
243 |
-
0
|
244 |
-
] # Default to first category if invalid
|
245 |
-
|
246 |
-
# Validate confidence is a number between 0 and 100
|
247 |
-
try:
|
248 |
-
result["confidence"] = float(result["confidence"])
|
249 |
-
if not 0 <= result["confidence"] <= 100:
|
250 |
-
result["confidence"] = 50
|
251 |
-
except:
|
252 |
-
result["confidence"] = 50
|
253 |
-
|
254 |
-
return result
|
255 |
-
except json.JSONDecodeError:
|
256 |
-
# Fall back to simple parsing if JSON fails
|
257 |
-
category = categories[0] # Default
|
258 |
-
for cat in categories:
|
259 |
-
if cat.lower() in response_text.lower():
|
260 |
-
category = cat
|
261 |
-
break
|
262 |
-
|
263 |
-
return {
|
264 |
-
"category": category,
|
265 |
-
"confidence": 50,
|
266 |
-
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)",
|
267 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,9 +1,95 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==24.1.0
|
2 |
+
aiohappyeyeballs==2.6.1
|
3 |
+
aiohttp==3.11.16
|
4 |
+
aiosignal==1.3.2
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.9.0
|
7 |
+
attrs==25.3.0
|
8 |
+
audioop-lts==0.2.1
|
9 |
+
certifi==2025.1.31
|
10 |
+
charset-normalizer==3.4.1
|
11 |
+
click==8.1.8
|
12 |
+
contourpy==1.3.2
|
13 |
+
cycler==0.12.1
|
14 |
+
distro==1.9.0
|
15 |
+
et-xmlfile==2.0.0
|
16 |
+
fastapi==0.115.12
|
17 |
+
ffmpy==0.5.0
|
18 |
+
filelock==3.18.0
|
19 |
+
fonttools==4.57.0
|
20 |
+
frozenlist==1.5.0
|
21 |
+
fsspec==2025.3.2
|
22 |
+
gradio==5.25.1
|
23 |
+
gradio-client==1.8.0
|
24 |
+
groovy==0.1.2
|
25 |
+
h11==0.14.0
|
26 |
+
httpcore==1.0.8
|
27 |
+
httpx==0.28.1
|
28 |
+
huggingface-hub==0.30.2
|
29 |
+
idna==3.10
|
30 |
+
importlib-metadata==8.6.1
|
31 |
+
jinja2==3.1.6
|
32 |
+
jiter==0.9.0
|
33 |
+
joblib==1.4.2
|
34 |
+
jsonschema==4.23.0
|
35 |
+
jsonschema-specifications==2024.10.1
|
36 |
+
kiwisolver==1.4.8
|
37 |
+
litellm==1.66.1
|
38 |
+
markdown-it-py==3.0.0
|
39 |
+
markupsafe==3.0.2
|
40 |
+
matplotlib==3.10.1
|
41 |
+
mdurl==0.1.2
|
42 |
+
mpmath==1.3.0
|
43 |
+
multidict==6.4.3
|
44 |
+
networkx==3.4.2
|
45 |
+
numpy==2.2.4
|
46 |
+
openai==1.74.0
|
47 |
+
openpyxl==3.1.5
|
48 |
+
orjson==3.10.16
|
49 |
+
packaging==24.2
|
50 |
+
pandas==2.2.3
|
51 |
+
pillow==11.2.1
|
52 |
+
propcache==0.3.1
|
53 |
+
pydantic==2.11.3
|
54 |
+
pydantic-core==2.33.1
|
55 |
+
pydub==0.25.1
|
56 |
+
pygments==2.19.1
|
57 |
+
pyparsing==3.2.3
|
58 |
+
python-dateutil==2.9.0.post0
|
59 |
+
python-dotenv==1.1.0
|
60 |
+
python-multipart==0.0.20
|
61 |
+
pytz==2025.2
|
62 |
+
pyyaml==6.0.2
|
63 |
+
referencing==0.36.2
|
64 |
+
regex==2024.11.6
|
65 |
+
requests==2.32.3
|
66 |
+
rich==14.0.0
|
67 |
+
rpds-py==0.24.0
|
68 |
+
ruff==0.11.5
|
69 |
+
safehttpx==0.1.6
|
70 |
+
safetensors==0.5.3
|
71 |
+
scikit-learn==1.6.1
|
72 |
+
scipy==1.15.2
|
73 |
+
semantic-version==2.10.0
|
74 |
+
setuptools==78.1.0
|
75 |
+
shellingham==1.5.4
|
76 |
+
six==1.17.0
|
77 |
+
sniffio==1.3.1
|
78 |
+
starlette==0.46.2
|
79 |
+
sympy==1.13.1
|
80 |
+
threadpoolctl==3.6.0
|
81 |
+
tiktoken==0.9.0
|
82 |
+
tokenizers==0.21.1
|
83 |
+
tomlkit==0.13.2
|
84 |
+
torch==2.6.0
|
85 |
+
tqdm==4.67.1
|
86 |
+
transformers==4.51.3
|
87 |
+
typer==0.15.2
|
88 |
+
typing-extensions==4.13.2
|
89 |
+
typing-inspection==0.4.0
|
90 |
+
tzdata==2025.2
|
91 |
+
urllib3==2.4.0
|
92 |
+
uvicorn==0.34.1
|
93 |
+
websockets==15.0.1
|
94 |
+
yarl==1.19.0
|
95 |
+
zipp==3.21.0
|
server.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List, Optional
|
5 |
+
import json
|
6 |
+
from classifiers.llm import LLMClassifier
|
7 |
+
from litellm import completion
|
8 |
+
import asyncio
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Configure CORS
|
13 |
+
app.add_middleware(
|
14 |
+
CORSMiddleware,
|
15 |
+
allow_origins=["*"], # In production, replace with specific origins
|
16 |
+
allow_credentials=True,
|
17 |
+
allow_methods=["*"],
|
18 |
+
allow_headers=["*"],
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize the LLM classifier
|
22 |
+
classifier = LLMClassifier(client=completion, model="gpt-3.5-turbo")
|
23 |
+
|
24 |
+
class TextInput(BaseModel):
|
25 |
+
text: str
|
26 |
+
categories: Optional[List[str]] = None
|
27 |
+
|
28 |
+
class ClassificationResponse(BaseModel):
|
29 |
+
category: str
|
30 |
+
confidence: float
|
31 |
+
explanation: str
|
32 |
+
|
33 |
+
class CategorySuggestionResponse(BaseModel):
|
34 |
+
categories: List[str]
|
35 |
+
|
36 |
+
@app.post("/classify", response_model=ClassificationResponse)
|
37 |
+
async def classify_text(text_input: TextInput):
|
38 |
+
try:
|
39 |
+
# Use async classification
|
40 |
+
results = await classifier.classify_async(
|
41 |
+
[text_input.text],
|
42 |
+
text_input.categories
|
43 |
+
)
|
44 |
+
result = results[0] # Get first result since we're classifying one text
|
45 |
+
|
46 |
+
return ClassificationResponse(
|
47 |
+
category=result["category"],
|
48 |
+
confidence=result["confidence"],
|
49 |
+
explanation=result["explanation"]
|
50 |
+
)
|
51 |
+
except Exception as e:
|
52 |
+
raise HTTPException(status_code=500, detail=str(e))
|
53 |
+
|
54 |
+
@app.post("/suggest-categories", response_model=CategorySuggestionResponse)
|
55 |
+
async def suggest_categories(texts: List[str]):
|
56 |
+
try:
|
57 |
+
categories = await classifier._suggest_categories_async(texts)
|
58 |
+
return CategorySuggestionResponse(categories=categories)
|
59 |
+
except Exception as e:
|
60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
import uvicorn
|
64 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
test_server.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
|
4 |
+
BASE_URL = "http://localhost:8000"
|
5 |
+
|
6 |
+
def test_classify_text():
|
7 |
+
# Test with default categories
|
8 |
+
response = requests.post(
|
9 |
+
f"{BASE_URL}/classify",
|
10 |
+
json={"text": "This is a sample text about technology and innovation."}
|
11 |
+
)
|
12 |
+
print("Classification with default categories:")
|
13 |
+
print(json.dumps(response.json(), indent=2))
|
14 |
+
|
15 |
+
# Test with custom categories
|
16 |
+
response = requests.post(
|
17 |
+
f"{BASE_URL}/classify",
|
18 |
+
json={
|
19 |
+
"text": "This is a sample text about technology and innovation.",
|
20 |
+
"categories": ["Technology", "Business", "Science", "Sports"]
|
21 |
+
}
|
22 |
+
)
|
23 |
+
print("\nClassification with custom categories:")
|
24 |
+
print(json.dumps(response.json(), indent=2))
|
25 |
+
|
26 |
+
def test_suggest_categories():
|
27 |
+
texts = [
|
28 |
+
"This is a text about artificial intelligence and machine learning.",
|
29 |
+
"A new breakthrough in quantum computing has been announced.",
|
30 |
+
"The latest smartphone features innovative camera technology."
|
31 |
+
]
|
32 |
+
|
33 |
+
response = requests.post(
|
34 |
+
f"{BASE_URL}/suggest-categories",
|
35 |
+
json=texts
|
36 |
+
)
|
37 |
+
print("\nSuggested categories:")
|
38 |
+
print(json.dumps(response.json(), indent=2))
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
print("Testing FastAPI server endpoints...")
|
42 |
+
test_classify_text()
|
43 |
+
test_suggest_categories()
|