Spaces:
Sleeping
Sleeping
isolate prompts
Browse files- prompts.py +15 -0
- utils.py +4 -16
prompts.py
CHANGED
@@ -61,3 +61,18 @@ Example texts:
|
|
61 |
|
62 |
Return your answer as a comma-separated list of new category names only.
|
63 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
Return your answer as a comma-separated list of new category names only.
|
63 |
"""
|
64 |
+
|
65 |
+
# Validation prompt
|
66 |
+
VALIDATION_PROMPT = """
|
67 |
+
As a validation expert, review the following text classifications and provide feedback.
|
68 |
+
For each text, assess whether the assigned category seems appropriate:
|
69 |
+
|
70 |
+
{}
|
71 |
+
|
72 |
+
Provide a brief validation report with:
|
73 |
+
1. Overall accuracy assessment (0-100%)
|
74 |
+
2. Any potential misclassifications identified
|
75 |
+
3. Suggestions for improvement
|
76 |
+
|
77 |
+
Keep your response under 300 words.
|
78 |
+
"""
|
utils.py
CHANGED
@@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
|
5 |
from sklearn.decomposition import PCA
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
import tempfile
|
|
|
8 |
|
9 |
|
10 |
def load_data(file_path):
|
@@ -133,7 +134,7 @@ def validate_results(df, text_columns, client):
|
|
133 |
sample_size = min(5, len(df))
|
134 |
sample_df = df.sample(n=sample_size, random_state=42)
|
135 |
|
136 |
-
# Build validation
|
137 |
validation_prompts = []
|
138 |
for _, row in sample_df.iterrows():
|
139 |
# Combine text from all selected columns
|
@@ -145,21 +146,8 @@ def validate_results(df, text_columns, client):
|
|
145 |
f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n"
|
146 |
)
|
147 |
|
148 |
-
prompt
|
149 |
-
|
150 |
-
For each text, assess whether the assigned category seems appropriate:
|
151 |
-
|
152 |
-
{}
|
153 |
-
|
154 |
-
Provide a brief validation report with:
|
155 |
-
1. Overall accuracy assessment (0-100%)
|
156 |
-
2. Any potential misclassifications identified
|
157 |
-
3. Suggestions for improvement
|
158 |
-
|
159 |
-
Keep your response under 300 words.
|
160 |
-
""".format(
|
161 |
-
"\n---\n".join(validation_prompts)
|
162 |
-
)
|
163 |
|
164 |
# Call LLM API
|
165 |
response = client.chat.completions.create(
|
|
|
5 |
from sklearn.decomposition import PCA
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
import tempfile
|
8 |
+
from prompts import VALIDATION_PROMPT
|
9 |
|
10 |
|
11 |
def load_data(file_path):
|
|
|
134 |
sample_size = min(5, len(df))
|
135 |
sample_df = df.sample(n=sample_size, random_state=42)
|
136 |
|
137 |
+
# Build validation prompts
|
138 |
validation_prompts = []
|
139 |
for _, row in sample_df.iterrows():
|
140 |
# Combine text from all selected columns
|
|
|
146 |
f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n"
|
147 |
)
|
148 |
|
149 |
+
# Use the prompt from prompts.py
|
150 |
+
prompt = VALIDATION_PROMPT.format("\n---\n".join(validation_prompts))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# Call LLM API
|
153 |
response = client.chat.completions.create(
|