#### INSTALLATIONS ```bash # Linux/Android (Termux)/MacOS/Windows. # Make sure you have "python3" and "pip" installed. # This package have very small size. pip install gradio_client rich --upgrade # If you are using Python 3.12 or newer. pip install gradio_client rich --upgrade --ignore-installed --break-system-packages ``` #### CREATE JARVIS FILE ```bash # I'm using nano editor. # You can use any file editor you want. nano jarvis # or whatever you want. ``` ### JARVIS MAIN SCRIPT ```python #!/usr/bin/env python3 import sys from gradio_client import Client from rich.console import Console from rich.markdown import Markdown console = Console() jarvis = Client("hadadrjt/ai") input = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!" result = jarvis.predict(multi={"text": input}, api_name="/api") responses = result[0][0][1] markdown = Markdown(responses) console.print(markdown) ``` ### JARVIS MULTI PLATFORM SCRIPT ```python #!/usr/bin/env python3 import sys from gradio_client import Client from rich.console import Console from rich.markdown import Markdown console = Console() jarvis = Client("hadadrjt/ai") model = "JARVIS: 2.1.2" # default to JARVIS, you can change the model here. jarvis.predict(new=model, api_name="/change_model") input_text = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!" result = jarvis.predict(multi={"text": input_text}, api_name="/api") response_text = result[0][0][1] console.print(Markdown(response_text)) ``` ### SET PERMISSION ```bash # Set permission (Linux/Android [Termux]/MacOS). # Windows users set permissions to 755 according with linux. chmod a+x jarvis ``` ### RUN JARVIS ```bash ./jarvis "Your message here." # According the name file you create. ``` #### LINUX USER's ```bash # Bonus for more flexible. sudo mv jarvis /bin/ai # Now you can run with simple command. ai "Your message here." ``` ### AVAILABLE MODELS ``` Choose one of the model name for the JARVIS multi platform. 1. JARVIS: 2.1.2 2. DeepSeek: V3-0324 3. DeepSeek: R1 (Reasoning) 4. DeepSeek: R1 - Distill Qwen 14B (Reasoning) 5. DeepSeek: R1 - Distill Qwen 32B (Reasoning) 6. DeepSeek: R1 - Distill Llama 70B (Reasoning) 7. Google: Gemma 3 1B-IT 8. Google: Gemma 3 4B-IT 9. Google: Gemma 3 27B-IT 10. Meta: Llama 3.1 8B Instruct 11. Meta: Llama 3.2 3B Instruct 12. Meta: Llama 3.3 70B Instruct 13. Meta: Llama 4 Maverick 17B 128E Instruct 14. Meta: Llama 4 Scout 17B 16E Instruct 15. Qwen: Qwen2.5 VL 3B Instruct 16. Qwen: Qwen2.5 VL 32B Instruct 17. Qwen: Qwen2.5 VL 72B Instruct 18. Agentica: Deepcoder 14B Preview ```