# # SPDX-FileCopyrightText: Hadad # SPDX-License-Identifier: CC-BY-NC-SA-4.0 # import gradio as gr import requests import json import os import random import time import pytesseract import pdfplumber import docx import pandas as pd import pptx import fitz import io import uuid import concurrent.futures import itertools import threading from openai import OpenAI from optillm.cot_reflection import cot_reflection from optillm.leap import leap from optillm.plansearch import plansearch from optillm.reread import re2_approach from optillm.rto import round_trip_optimization from optillm.self_consistency import advanced_self_consistency_approach from optillm.z3_solver import Z3SymPySolverSystem from pathlib import Path from PIL import Image from pptx import Presentation os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host] LINUX_SERVER_HOSTS_MARKED = set() LINUX_SERVER_HOSTS_ATTEMPTS = {} LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key] LINUX_SERVER_PROVIDER_KEYS_MARKED = set() LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)} RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) MODEL_CHOICES = list(MODEL_MAPPING.values()) if MODEL_MAPPING else [] DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) META_TAGS = os.getenv("META_TAGS") ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS")) ACTIVE_CANDIDATE = None def get_available_items(items, marked): available = [item for item in items if item not in marked] random.shuffle(available) return available def marked_item(item, marked, attempts): marked.add(item) attempts[item] = attempts.get(item, 0) + 1 if attempts[item] >= 3: def remove_fail(): marked.discard(item) if item in attempts: del attempts[item] threading.Timer(300, remove_fail).start() class SessionWithID(requests.Session): def __init__(self): super().__init__() self.session_id = str(uuid.uuid4()) def create_session(): return SessionWithID() def get_model_key(display_name): return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0]) def extract_file_content(file_path): ext = Path(file_path).suffix.lower() content = "" try: if ext == ".pdf": with pdfplumber.open(file_path) as pdf: for page in pdf.pages: text = page.extract_text() if text: content += text + "\n" tables = page.extract_tables() if tables: for table in tables: table_str = "\n".join([", ".join(row) for row in table if row]) content += "\n" + table_str + "\n" elif ext in [".doc", ".docx"]: doc = docx.Document(file_path) for para in doc.paragraphs: content += para.text + "\n" elif ext in [".xlsx", ".xls"]: df = pd.read_excel(file_path) content += df.to_csv(index=False) elif ext in [".ppt", ".pptx"]: prs = Presentation(file_path) for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text") and shape.text: content += shape.text + "\n" elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]: try: pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" image = Image.open(file_path) text = pytesseract.image_to_string(image) content += text + "\n" except Exception as e: content += f"{e}\n" else: content = Path(file_path).read_text(encoding="utf-8") except Exception as e: content = f"{file_path}: {e}" return content.strip() def process_ai_response(ai_text): try: result = round_trip_optimization(ai_text) result = re2_approach(result) result = cot_reflection(result) result = advanced_self_consistency_approach(result) result = plansearch(result) result = leap(result) solver = Z3SymPySolverSystem() result = solver.solve(result) return result except Exception: return ai_text def fetch_response(host, provider_key, selected_model, messages, model_config, session_id): try: client = OpenAI(base_url=host, api_key=provider_key) data = {"model": selected_model, "messages": messages, **model_config} response = client.chat.completions.create(extra_body={"optillm_approach": "rto|re2|cot_reflection|self_consistency|plansearch|leap|z3|bon|moa|mcts|mcp|router|privacy|executecode|json", "session_id": session_id}, **data) ai_text = response.choices[0].message.content if response.choices and response.choices[0].message and response.choices[0].message.content else RESPONSES["RESPONSE_2"] return process_ai_response(ai_text) except Exception: marked_item(provider_key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) marked_item(host, LINUX_SERVER_HOSTS_MARKED, LINUX_SERVER_HOSTS_ATTEMPTS) raise def chat_with_model(history, user_input, selected_model_display, sess): global ACTIVE_CANDIDATE if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED): return RESPONSES["RESPONSE_3"] if not hasattr(sess, "session_id"): sess.session_id = str(uuid.uuid4()) selected_model = get_model_key(selected_model_display) model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG) messages = [{"role": "user", "content": user} for user, _ in history] messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant] messages.append({"role": "user", "content": user_input}) if ACTIVE_CANDIDATE is not None: try: return fetch_response(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], selected_model, messages, model_config, sess.session_id) except Exception: ACTIVE_CANDIDATE = None available_keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) available_servers = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED) candidates = [(host, key) for host in available_servers for key in available_keys] random.shuffle(candidates) with concurrent.futures.ThreadPoolExecutor(max_workers=len(candidates)) as executor: futures = {executor.submit(fetch_response, host, key, selected_model, messages, model_config, sess.session_id): (host, key) for (host, key) in candidates} for future in concurrent.futures.as_completed(futures): try: result = future.result() ACTIVE_CANDIDATE = futures[future] for f in futures: if f is not future: f.cancel() return result except Exception: continue return RESPONSES["RESPONSE_2"] def respond(multi_input, history, selected_model_display, sess): message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])} if not message["text"] and not message["files"]: yield history, gr.MultimodalTextbox(value=None, interactive=True), sess return combined_input = "" for file_item in message["files"]: file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item file_content = extract_file_content(file_path) combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n" if message["text"]: combined_input += message["text"] history.append([combined_input, ""]) ai_response = chat_with_model(history, combined_input, selected_model_display, sess) history[-1][1] = "" def convert_to_string(data): if isinstance(data, (str, int, float)): return str(data) elif isinstance(data, bytes): return data.decode("utf-8", errors="ignore") elif isinstance(data, (list, tuple)): return "".join(map(convert_to_string, data)) elif isinstance(data, dict): return json.dumps(data, ensure_ascii=False) else: return repr(data) for character in ai_response: history[-1][1] += convert_to_string(character) time.sleep(0.0001) yield history, gr.MultimodalTextbox(value=None, interactive=True), sess def change_model(new_model_display): return [], create_session(), new_model_display with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: user_history = gr.State([]) user_session = gr.State(create_session()) selected_model = gr.State(MODEL_CHOICES[0]) chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) with gr.Row(): msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model]) msg.submit(fn=respond, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session]) jarvis.launch(show_api=False, max_file_size="1mb")