Spaces:
sierrafr
/
Runtime error

File size: 2,564 Bytes
934df70
7f5eec6
934df70
 
 
 
7f5eec6
934df70
 
991dd3b
 
934df70
7f5eec6
934df70
 
 
991dd3b
7f5eec6
55378c8
7f5eec6
991dd3b
7f5eec6
991dd3b
7f5eec6
 
 
991dd3b
7f5eec6
59cef27
7f5eec6
 
 
 
55378c8
 
 
 
 
 
 
 
 
 
1abe203
55378c8
 
 
 
 
 
 
 
7f5eec6
934df70
7f5eec6
934df70
7f5eec6
991dd3b
934df70
7f5eec6
 
934df70
991dd3b
 
934df70
7f5eec6
 
 
 
934df70
7f5eec6
991dd3b
55378c8
 
 
 
 
1abe203
55378c8
 
 
 
 
c7c62f6
 
 
 
 
 
 
 
 
 
 
 
55378c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#### INSTALLATIONS
```bash
# Linux/Android (Termux)/MacOS/Windows.
# Make sure you have "python3" and "pip" installed.
# This package have very small size.
pip install gradio_client rich --upgrade

# If you are using Python 3.12 or newer.
pip install gradio_client rich --upgrade --ignore-installed --break-system-packages
```

#### CREATE JARVIS FILE
```bash
# I'm using nano editor.
# You can use any file editor you want.
nano jarvis # or whatever you want.
```

### JARVIS MAIN SCRIPT
```python
#!/usr/bin/env python3
import sys
from gradio_client import Client
from rich.console import Console
from rich.markdown import Markdown
console = Console()
jarvis = Client("hadadrjt/ai")
input = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!"
result = jarvis.predict(multi={"text": input}, api_name="/api")
responses = result[0][0][1]
markdown = Markdown(responses)
console.print(markdown)
```

### JARVIS MULTI PLATFORM SCRIPT
```python
#!/usr/bin/env python3
import sys
from gradio_client import Client
from rich.console import Console
from rich.markdown import Markdown
console = Console()
jarvis = Client("hadadrjt/ai")
model = "JARVIS: 2.1.2" # default to JARVIS, you can change the model here.
jarvis.predict(new=model, api_name="/change_model")
input_text = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!"
result = jarvis.predict(multi={"text": input_text}, api_name="/api")
response_text = result[0][0][1]
console.print(Markdown(response_text))
```

### SET PERMISSION
```bash
# Set permission (Linux/Android [Termux]/MacOS).
# Windows users set permissions to 755 according with linux.
chmod a+x jarvis
```

### RUN JARVIS
```bash
./jarvis "Your message here."
# According the name file you create.
```

#### LINUX USER's
```bash
# Bonus for more flexible.
sudo mv jarvis /bin/ai

# Now you can run with simple command.
ai "Your message here."
```

### AVAILABLE MODELS
```
Choose one of the model name for the JARVIS multi platform.

1. JARVIS: 2.1.2
2. DeepSeek: V3-0324
3. DeepSeek: R1 (Reasoning)
4. DeepSeek: R1 - Distill Qwen 14B (Reasoning)
5. DeepSeek: R1 - Distill Qwen 32B (Reasoning)
6. DeepSeek: R1 - Distill Llama 70B (Reasoning)
7. Google: Gemma 3 1B-IT
8. Google: Gemma 3 4B-IT
9. Google: Gemma 3 27B-IT
10. Meta: Llama 3.1 8B Instruct
11. Meta: Llama 3.2 3B Instruct
12. Meta: Llama 3.3 70B Instruct
13. Meta: Llama 4 Maverick 17B 128E Instruct
14. Meta: Llama 4 Scout 17B 16E Instruct
15. Qwen: Qwen2.5 VL 3B Instruct
16. Qwen: Qwen2.5 VL 32B Instruct
17. Qwen: Qwen2.5 VL 72B Instruct
18. Agentica: Deepcoder 14B Preview
```