import gradio as gr import os from transformers import WhisperProcessor, WhisperForConditionalGeneration import numpy as np import librosa # Initialize Whisper model processor = WhisperProcessor.from_pretrained("openai/whisper-base") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") # Set light green theme theme = gr.themes.Base( primary_hue="emerald", secondary_hue="emerald", neutral_hue="gray", ) def validate_file(file): # Check file size (25 MB limit) file_size_mb = os.path.getsize(file) / (1024 * 1024) if file_size_mb > 25: return False, f"File size is {file_size_mb:.2f} MB. Please upload a file smaller than 25 MB." # Check file extension file_extension = os.path.splitext(file)[1].lower() if file_extension not in ['.mp3', '.wav']: return False, "Only .mp3 and .wav formats are supported." return True, "File is valid." def transcribe_audio(audio_file): # Validate the file first is_valid, message = validate_file(audio_file) if not is_valid: return message try: # Load audio file speech_array, sampling_rate = librosa.load(audio_file, sr=16000) # Process the audio file input_features = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_features # Generate token ids predicted_ids = model.generate(input_features) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription except Exception as e: return f"An error occurred during transcription: {str(e)}" # Create Gradio interface with gr.Blocks(theme=theme) as demo: gr.Markdown("# Audio Transcription with Whisper") gr.Markdown("Upload an audio file (.mp3 or .wav) of maximum 25MB to get the transcription.") with gr.Row(): with gr.Column(): audio_input = gr.Audio(type="filepath", label="Upload Audio File") submit_btn = gr.Button("Transcribe", variant="primary") with gr.Column(): output = gr.Textbox(label="Transcription Result", lines=10) submit_btn.click(fn=transcribe_audio, inputs=audio_input, outputs=output) gr.Markdown("### Limitations") gr.Markdown("- Maximum file size: 25 MB") gr.Markdown("- Supported formats: .mp3 and .wav") gr.Markdown("- Uses the Whisper base model which works best with clear audio") # Launch the app demo.launch()