Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,132 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import os
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
if os.path.getsize(audio_file.name) > 25 * 1024 * 1024:
|
10 |
-
return "Error: File size exceeds 25MB limit.", None
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
with open(output_filename, "w") as text_file:
|
16 |
-
text_file.write(result["text"])
|
17 |
-
|
18 |
-
return result["text"], output_filename
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
fn=transcribe_audio,
|
22 |
-
inputs=
|
23 |
-
|
24 |
-
gr.Textbox(label="Transcription"),
|
25 |
-
gr.File(label="Download Transcript")
|
26 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
title="Free Transcript Maker",
|
28 |
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
|
29 |
)
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
+
import yt_dlp as youtube_dl
|
4 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
+
import tempfile
|
6 |
import os
|
7 |
+
import time
|
8 |
|
9 |
+
# Constants
|
10 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
11 |
+
BATCH_SIZE = 8
|
12 |
+
FILE_LIMIT_MB = 25 # File size limit in MB
|
13 |
+
YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube file limit
|
14 |
|
15 |
+
# Device configuration (CUDA if available)
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
|
17 |
|
18 |
+
# Load Whisper model and processor
|
19 |
+
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
20 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to(device)
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def transcribe_audio(inputs):
|
23 |
+
"""Transcribe audio using Whisper model."""
|
24 |
+
if inputs is None:
|
25 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
26 |
+
|
27 |
+
# Check file size (max 25MB)
|
28 |
+
if os.path.getsize(inputs) > FILE_LIMIT_MB * 1024 * 1024:
|
29 |
+
raise gr.Error(f"File size exceeds {FILE_LIMIT_MB}MB limit.")
|
30 |
+
|
31 |
+
# Preprocess audio input
|
32 |
+
audio_input = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
33 |
+
|
34 |
+
# Generate transcription
|
35 |
+
predicted_ids = model.generate(audio_input.input_values, max_length=448)
|
36 |
+
|
37 |
+
# Decode the transcription output
|
38 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
39 |
+
return transcription
|
40 |
+
|
41 |
+
def _return_yt_html_embed(yt_url):
|
42 |
+
"""Return YouTube embed HTML for display."""
|
43 |
+
video_id = yt_url.split("?v=")[-1]
|
44 |
+
html_embed = f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
|
45 |
+
return html_embed
|
46 |
+
|
47 |
+
def download_yt_audio(yt_url, filename):
|
48 |
+
"""Download audio from a YouTube URL."""
|
49 |
+
info_loader = youtube_dl.YoutubeDL()
|
50 |
+
|
51 |
+
try:
|
52 |
+
info = info_loader.extract_info(yt_url, download=False)
|
53 |
+
except youtube_dl.utils.DownloadError as err:
|
54 |
+
raise gr.Error(f"Download error: {str(err)}")
|
55 |
+
|
56 |
+
# Check video length
|
57 |
+
file_length_s = int(info.get("duration", 0))
|
58 |
+
|
59 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
60 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
61 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
62 |
+
raise gr.Error(f"Maximum YouTube video length is {yt_length_limit_hms}, but video is {file_length_hms}.")
|
63 |
+
|
64 |
+
# Download the video
|
65 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
66 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
67 |
+
try:
|
68 |
+
ydl.download([yt_url])
|
69 |
+
except youtube_dl.utils.ExtractorError as err:
|
70 |
+
raise gr.Error(f"Error while downloading video: {str(err)}")
|
71 |
+
|
72 |
+
def yt_transcribe(yt_url):
|
73 |
+
"""Transcribe YouTube video using Whisper model."""
|
74 |
+
html_embed = _return_yt_html_embed(yt_url)
|
75 |
+
|
76 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
77 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
78 |
+
download_yt_audio(yt_url, filepath)
|
79 |
+
|
80 |
+
with open(filepath, "rb") as file:
|
81 |
+
audio_input = file.read()
|
82 |
+
|
83 |
+
# Process and transcribe
|
84 |
+
transcription = transcribe_audio(audio_input)
|
85 |
+
return html_embed, transcription
|
86 |
+
|
87 |
+
# Create Gradio interface
|
88 |
+
demo = gr.Blocks()
|
89 |
+
|
90 |
+
# Microphone transcription interface
|
91 |
+
mf_transcribe = gr.Interface(
|
92 |
fn=transcribe_audio,
|
93 |
+
inputs=[
|
94 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
|
|
|
|
95 |
],
|
96 |
+
outputs="text",
|
97 |
+
layout="horizontal",
|
98 |
+
theme="huggingface",
|
99 |
+
title="Whisper Transcription (Microphone)",
|
100 |
+
description="Transcribe audio from your microphone. File size limit is 25MB."
|
101 |
+
)
|
102 |
+
|
103 |
+
# File upload transcription interface
|
104 |
+
file_transcribe = gr.Interface(
|
105 |
+
fn=transcribe_audio,
|
106 |
+
inputs=[
|
107 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
108 |
+
],
|
109 |
+
outputs="text",
|
110 |
+
layout="horizontal",
|
111 |
+
theme="huggingface",
|
112 |
+
title="Whisper Transcription (File)",
|
113 |
+
description="Upload an audio file to transcribe. File size limit is 25MB."
|
114 |
+
)
|
115 |
+
|
116 |
+
# YouTube video transcription interface
|
117 |
+
yt_transcribe = gr.Interface(
|
118 |
+
fn=yt_transcribe,
|
119 |
+
inputs=[
|
120 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste YouTube URL", label="YouTube URL"),
|
121 |
+
],
|
122 |
+
outputs=["html", "text"],
|
123 |
+
layout="horizontal",
|
124 |
+
theme="huggingface",
|
125 |
title="Free Transcript Maker",
|
126 |
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
|
127 |
)
|
128 |
|
129 |
+
with demo:
|
130 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
131 |
+
|
132 |
+
demo.launch(enable_queue=True)
|