siddqamar commited on
Commit
bdc7600
·
verified ·
1 Parent(s): 15b6f2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -120
app.py CHANGED
@@ -1,132 +1,75 @@
1
- import torch
2
  import gradio as gr
3
- import yt_dlp as youtube_dl
4
- from transformers import WhisperProcessor, WhisperForConditionalGeneration
5
- import tempfile
6
  import os
7
- import time
8
-
9
- # Constants
10
- MODEL_NAME = "openai/whisper-large-v3"
11
- BATCH_SIZE = 8
12
- FILE_LIMIT_MB = 25 # File size limit in MB
13
- YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube file limit
14
-
15
- # Device configuration (CUDA if available)
16
- device = 0 if torch.cuda.is_available() else "cpu"
17
-
18
- # Load Whisper model and processor
19
- processor = WhisperProcessor.from_pretrained(MODEL_NAME)
20
- model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to(device)
21
 
22
- def transcribe_audio(inputs):
23
- """Transcribe audio using Whisper model."""
24
- if inputs is None:
25
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
26
 
27
- # Check file size (max 25MB)
28
- if os.path.getsize(inputs) > FILE_LIMIT_MB * 1024 * 1024:
29
- raise gr.Error(f"File size exceeds {FILE_LIMIT_MB}MB limit.")
 
30
 
31
- # Preprocess audio input
32
- audio_input = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
33
-
34
- # Generate transcription
35
- predicted_ids = model.generate(audio_input.input_values, max_length=448)
36
-
37
- # Decode the transcription output
38
- transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
39
- return transcription
40
-
41
- def _return_yt_html_embed(yt_url):
42
- """Return YouTube embed HTML for display."""
43
- video_id = yt_url.split("?v=")[-1]
44
- html_embed = f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
45
- return html_embed
46
 
47
- def download_yt_audio(yt_url, filename):
48
- """Download audio from a YouTube URL."""
49
- info_loader = youtube_dl.YoutubeDL()
 
 
50
 
51
  try:
52
- info = info_loader.extract_info(yt_url, download=False)
53
- except youtube_dl.utils.DownloadError as err:
54
- raise gr.Error(f"Download error: {str(err)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- # Check video length
57
- file_length_s = int(info.get("duration", 0))
 
 
 
 
 
58
 
59
- if file_length_s > YT_LENGTH_LIMIT_S:
60
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
61
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
62
- raise gr.Error(f"Maximum YouTube video length is {yt_length_limit_hms}, but video is {file_length_hms}.")
63
 
64
- # Download the video
65
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
67
- try:
68
- ydl.download([yt_url])
69
- except youtube_dl.utils.ExtractorError as err:
70
- raise gr.Error(f"Error while downloading video: {str(err)}")
71
-
72
- def yt_transcribe(yt_url):
73
- """Transcribe YouTube video using Whisper model."""
74
- html_embed = _return_yt_html_embed(yt_url)
75
-
76
- with tempfile.TemporaryDirectory() as tmpdirname:
77
- filepath = os.path.join(tmpdirname, "video.mp4")
78
- download_yt_audio(yt_url, filepath)
79
-
80
- with open(filepath, "rb") as file:
81
- audio_input = file.read()
82
-
83
- # Process and transcribe
84
- transcription = transcribe_audio(audio_input)
85
- return html_embed, transcription
86
-
87
- # Create Gradio interface
88
- demo = gr.Blocks()
89
-
90
- # Microphone transcription interface
91
- mf_transcribe = gr.Interface(
92
- fn=transcribe_audio,
93
- inputs=[
94
- gr.inputs.Audio(source="microphone", type="filepath", optional=True),
95
- ],
96
- outputs="text",
97
- layout="horizontal",
98
- theme="huggingface",
99
- title="Whisper Transcription (Microphone)",
100
- description="Transcribe audio from your microphone. File size limit is 25MB."
101
- )
102
-
103
- # File upload transcription interface
104
- file_transcribe = gr.Interface(
105
- fn=transcribe_audio,
106
- inputs=[
107
- gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
108
- ],
109
- outputs="text",
110
- layout="horizontal",
111
- theme="huggingface",
112
- title="Whisper Transcription (File)",
113
- description="Upload an audio file to transcribe. File size limit is 25MB."
114
- )
115
-
116
- # YouTube video transcription interface
117
- yt_transcribe = gr.Interface(
118
- fn=yt_transcribe,
119
- inputs=[
120
- gr.inputs.Textbox(lines=1, placeholder="Paste YouTube URL", label="YouTube URL"),
121
- ],
122
- outputs=["html", "text"],
123
- layout="horizontal",
124
- theme="huggingface",
125
- title="Free Transcript Maker",
126
- description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
127
- )
128
-
129
- with demo:
130
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
131
 
132
- demo.launch(enable_queue=True)
 
 
 
1
  import gradio as gr
 
 
 
2
  import os
3
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
4
+ import numpy as np
5
+ import librosa
6
+
7
+ # Initialize Whisper model
8
+ processor = WhisperProcessor.from_pretrained("openai/whisper-base")
9
+ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
10
+
11
+ # Set light green theme
12
+ theme = gr.themes.Base(
13
+ primary_hue="emerald",
14
+ secondary_hue="emerald",
15
+ neutral_hue="gray",
16
+ )
17
 
18
+ def validate_file(file):
19
+ # Check file size (25 MB limit)
20
+ file_size_mb = os.path.getsize(file) / (1024 * 1024)
21
+ if file_size_mb > 25:
22
+ return False, f"File size is {file_size_mb:.2f} MB. Please upload a file smaller than 25 MB."
23
 
24
+ # Check file extension
25
+ file_extension = os.path.splitext(file)[1].lower()
26
+ if file_extension not in ['.mp3', '.wav']:
27
+ return False, "Only .mp3 and .wav formats are supported."
28
 
29
+ return True, "File is valid."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ def transcribe_audio(audio_file):
32
+ # Validate the file first
33
+ is_valid, message = validate_file(audio_file)
34
+ if not is_valid:
35
+ return message
36
 
37
  try:
38
+ # Load audio file
39
+ speech_array, sampling_rate = librosa.load(audio_file, sr=16000)
40
+
41
+ # Process the audio file
42
+ input_features = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_features
43
+
44
+ # Generate token ids
45
+ predicted_ids = model.generate(input_features)
46
+
47
+ # Decode token ids to text
48
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
49
+
50
+ return transcription
51
+ except Exception as e:
52
+ return f"An error occurred during transcription: {str(e)}"
53
+
54
+ # Create Gradio interface
55
+ with gr.Blocks(theme=theme) as demo:
56
+ gr.Markdown("# Audio Transcription with Whisper")
57
+ gr.Markdown("Upload an audio file (.mp3 or .wav) of maximum 25MB to get the transcription.")
58
 
59
+ with gr.Row():
60
+ with gr.Column():
61
+ audio_input = gr.Audio(type="filepath", label="Upload Audio File")
62
+ submit_btn = gr.Button("Transcribe", variant="primary")
63
+
64
+ with gr.Column():
65
+ output = gr.Textbox(label="Transcription Result", lines=10)
66
 
67
+ submit_btn.click(fn=transcribe_audio, inputs=audio_input, outputs=output)
 
 
 
68
 
69
+ gr.Markdown("### Limitations")
70
+ gr.Markdown("- Maximum file size: 25 MB")
71
+ gr.Markdown("- Supported formats: .mp3 and .wav")
72
+ gr.Markdown("- Uses the Whisper base model which works best with clear audio")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ # Launch the app
75
+ demo.launch()