Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,75 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
-
import yt_dlp as youtube_dl
|
4 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
-
import tempfile
|
6 |
import os
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
# Check file
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
audio_input = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device)
|
33 |
-
|
34 |
-
# Generate transcription
|
35 |
-
predicted_ids = model.generate(audio_input.input_values, max_length=448)
|
36 |
-
|
37 |
-
# Decode the transcription output
|
38 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
39 |
-
return transcription
|
40 |
-
|
41 |
-
def _return_yt_html_embed(yt_url):
|
42 |
-
"""Return YouTube embed HTML for display."""
|
43 |
-
video_id = yt_url.split("?v=")[-1]
|
44 |
-
html_embed = f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
|
45 |
-
return html_embed
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
61 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
62 |
-
raise gr.Error(f"Maximum YouTube video length is {yt_length_limit_hms}, but video is {file_length_hms}.")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
ydl.download([yt_url])
|
69 |
-
except youtube_dl.utils.ExtractorError as err:
|
70 |
-
raise gr.Error(f"Error while downloading video: {str(err)}")
|
71 |
-
|
72 |
-
def yt_transcribe(yt_url):
|
73 |
-
"""Transcribe YouTube video using Whisper model."""
|
74 |
-
html_embed = _return_yt_html_embed(yt_url)
|
75 |
-
|
76 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
77 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
78 |
-
download_yt_audio(yt_url, filepath)
|
79 |
-
|
80 |
-
with open(filepath, "rb") as file:
|
81 |
-
audio_input = file.read()
|
82 |
-
|
83 |
-
# Process and transcribe
|
84 |
-
transcription = transcribe_audio(audio_input)
|
85 |
-
return html_embed, transcription
|
86 |
-
|
87 |
-
# Create Gradio interface
|
88 |
-
demo = gr.Blocks()
|
89 |
-
|
90 |
-
# Microphone transcription interface
|
91 |
-
mf_transcribe = gr.Interface(
|
92 |
-
fn=transcribe_audio,
|
93 |
-
inputs=[
|
94 |
-
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
95 |
-
],
|
96 |
-
outputs="text",
|
97 |
-
layout="horizontal",
|
98 |
-
theme="huggingface",
|
99 |
-
title="Whisper Transcription (Microphone)",
|
100 |
-
description="Transcribe audio from your microphone. File size limit is 25MB."
|
101 |
-
)
|
102 |
-
|
103 |
-
# File upload transcription interface
|
104 |
-
file_transcribe = gr.Interface(
|
105 |
-
fn=transcribe_audio,
|
106 |
-
inputs=[
|
107 |
-
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
108 |
-
],
|
109 |
-
outputs="text",
|
110 |
-
layout="horizontal",
|
111 |
-
theme="huggingface",
|
112 |
-
title="Whisper Transcription (File)",
|
113 |
-
description="Upload an audio file to transcribe. File size limit is 25MB."
|
114 |
-
)
|
115 |
-
|
116 |
-
# YouTube video transcription interface
|
117 |
-
yt_transcribe = gr.Interface(
|
118 |
-
fn=yt_transcribe,
|
119 |
-
inputs=[
|
120 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste YouTube URL", label="YouTube URL"),
|
121 |
-
],
|
122 |
-
outputs=["html", "text"],
|
123 |
-
layout="horizontal",
|
124 |
-
theme="huggingface",
|
125 |
-
title="Free Transcript Maker",
|
126 |
-
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
|
127 |
-
)
|
128 |
-
|
129 |
-
with demo:
|
130 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
131 |
|
132 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
# Initialize Whisper model
|
8 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
9 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
10 |
+
|
11 |
+
# Set light green theme
|
12 |
+
theme = gr.themes.Base(
|
13 |
+
primary_hue="emerald",
|
14 |
+
secondary_hue="emerald",
|
15 |
+
neutral_hue="gray",
|
16 |
+
)
|
17 |
|
18 |
+
def validate_file(file):
|
19 |
+
# Check file size (25 MB limit)
|
20 |
+
file_size_mb = os.path.getsize(file) / (1024 * 1024)
|
21 |
+
if file_size_mb > 25:
|
22 |
+
return False, f"File size is {file_size_mb:.2f} MB. Please upload a file smaller than 25 MB."
|
23 |
|
24 |
+
# Check file extension
|
25 |
+
file_extension = os.path.splitext(file)[1].lower()
|
26 |
+
if file_extension not in ['.mp3', '.wav']:
|
27 |
+
return False, "Only .mp3 and .wav formats are supported."
|
28 |
|
29 |
+
return True, "File is valid."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def transcribe_audio(audio_file):
|
32 |
+
# Validate the file first
|
33 |
+
is_valid, message = validate_file(audio_file)
|
34 |
+
if not is_valid:
|
35 |
+
return message
|
36 |
|
37 |
try:
|
38 |
+
# Load audio file
|
39 |
+
speech_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
40 |
+
|
41 |
+
# Process the audio file
|
42 |
+
input_features = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_features
|
43 |
+
|
44 |
+
# Generate token ids
|
45 |
+
predicted_ids = model.generate(input_features)
|
46 |
+
|
47 |
+
# Decode token ids to text
|
48 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
49 |
+
|
50 |
+
return transcription
|
51 |
+
except Exception as e:
|
52 |
+
return f"An error occurred during transcription: {str(e)}"
|
53 |
+
|
54 |
+
# Create Gradio interface
|
55 |
+
with gr.Blocks(theme=theme) as demo:
|
56 |
+
gr.Markdown("# Audio Transcription with Whisper")
|
57 |
+
gr.Markdown("Upload an audio file (.mp3 or .wav) of maximum 25MB to get the transcription.")
|
58 |
|
59 |
+
with gr.Row():
|
60 |
+
with gr.Column():
|
61 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
62 |
+
submit_btn = gr.Button("Transcribe", variant="primary")
|
63 |
+
|
64 |
+
with gr.Column():
|
65 |
+
output = gr.Textbox(label="Transcription Result", lines=10)
|
66 |
|
67 |
+
submit_btn.click(fn=transcribe_audio, inputs=audio_input, outputs=output)
|
|
|
|
|
|
|
68 |
|
69 |
+
gr.Markdown("### Limitations")
|
70 |
+
gr.Markdown("- Maximum file size: 25 MB")
|
71 |
+
gr.Markdown("- Supported formats: .mp3 and .wav")
|
72 |
+
gr.Markdown("- Uses the Whisper base model which works best with clear audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Launch the app
|
75 |
+
demo.launch()
|