Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -66,10 +66,6 @@ def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
|
66 |
def is_sufficient(text: str, min_word_count: int = 500) -> bool:
|
67 |
"""
|
68 |
Determines if the fetched information meets the sufficiency criteria.
|
69 |
-
|
70 |
-
:param text: Aggregated text from primary sources.
|
71 |
-
:param min_word_count: Minimum number of words required.
|
72 |
-
:return: True if sufficient, False otherwise.
|
73 |
"""
|
74 |
word_count = len(text.split())
|
75 |
print(f"[DEBUG] Aggregated word count: {word_count}")
|
@@ -78,13 +74,8 @@ def is_sufficient(text: str, min_word_count: int = 500) -> bool:
|
|
78 |
def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
79 |
"""
|
80 |
Queries the Groq API to retrieve additional relevant information from the LLM's knowledge base.
|
81 |
-
|
82 |
-
:param topic: The research topic.
|
83 |
-
:param existing_text: The text already gathered from primary sources.
|
84 |
-
:return: Additional relevant information as a string.
|
85 |
"""
|
86 |
print("[LOG] Querying LLM for additional information.")
|
87 |
-
# Define the system prompt for the LLM
|
88 |
system_prompt = (
|
89 |
"You are an AI assistant with extensive knowledge up to 2023-10. "
|
90 |
"Provide additional relevant information on the following topic based on your knowledge base.\n\n"
|
@@ -94,7 +85,6 @@ def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
|
94 |
)
|
95 |
|
96 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
97 |
-
|
98 |
try:
|
99 |
response = groq_client.chat.completions.create(
|
100 |
messages=[{"role": "system", "content": system_prompt}],
|
@@ -126,18 +116,15 @@ def research_topic(topic: str) -> str:
|
|
126 |
|
127 |
summary_parts = []
|
128 |
|
129 |
-
# Wikipedia summary
|
130 |
wiki_summary = fetch_wikipedia_summary(topic)
|
131 |
if wiki_summary:
|
132 |
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
133 |
|
134 |
-
# For each news RSS
|
135 |
for name, url in sources.items():
|
136 |
try:
|
137 |
items = fetch_rss_feed(url)
|
138 |
if not items:
|
139 |
continue
|
140 |
-
# Use simple keyword matching
|
141 |
title, desc, link = find_relevant_article(items, topic, min_match=2)
|
142 |
if link:
|
143 |
article_text = fetch_article_text(link)
|
@@ -154,15 +141,14 @@ def research_topic(topic: str) -> str:
|
|
154 |
print(aggregated_info)
|
155 |
|
156 |
if not is_sufficient(aggregated_info):
|
157 |
-
print("[LOG] Insufficient
|
158 |
additional_info = query_llm_for_additional_info(topic, aggregated_info)
|
159 |
if additional_info:
|
160 |
aggregated_info += " " + additional_info
|
161 |
else:
|
162 |
-
print("[ERROR] Failed to retrieve additional
|
163 |
|
164 |
if not aggregated_info:
|
165 |
-
print("[LOG] No information found for the topic.")
|
166 |
return f"Sorry, I couldn't find recent information on '{topic}'."
|
167 |
|
168 |
return aggregated_info
|
@@ -170,24 +156,21 @@ def research_topic(topic: str) -> str:
|
|
170 |
def fetch_wikipedia_summary(topic: str) -> str:
|
171 |
print("[LOG] Fetching Wikipedia summary for:", topic)
|
172 |
try:
|
173 |
-
# 1. Search for the topic
|
174 |
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
|
175 |
resp = requests.get(search_url)
|
176 |
if resp.status_code != 200:
|
177 |
-
print(f"[ERROR] Failed to fetch Wikipedia search
|
178 |
return ""
|
179 |
data = resp.json()
|
180 |
if len(data) > 1 and data[1]:
|
181 |
title = data[1][0]
|
182 |
-
# 2. Fetch summary
|
183 |
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
|
184 |
s_resp = requests.get(summary_url)
|
185 |
if s_resp.status_code == 200:
|
186 |
s_data = s_resp.json()
|
187 |
if "extract" in s_data:
|
188 |
-
print("[LOG] Wikipedia summary fetched
|
189 |
return s_data["extract"]
|
190 |
-
print("[LOG] No Wikipedia summary found for topic:", topic)
|
191 |
return ""
|
192 |
except Exception as e:
|
193 |
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
|
@@ -198,55 +181,42 @@ def fetch_rss_feed(feed_url: str) -> list:
|
|
198 |
try:
|
199 |
resp = requests.get(feed_url)
|
200 |
if resp.status_code != 200:
|
201 |
-
print(f"[ERROR] Failed to fetch RSS feed
|
202 |
return []
|
203 |
soup = BeautifulSoup(resp.content, "html.parser")
|
204 |
items = soup.find_all("item")
|
205 |
-
print(f"[LOG] Number of items
|
206 |
return items
|
207 |
except Exception as e:
|
208 |
-
print(f"[ERROR] Exception
|
209 |
return []
|
210 |
|
211 |
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
212 |
-
"""
|
213 |
-
Searches for relevant articles based on topic keywords.
|
214 |
-
:param items: List of RSS feed items
|
215 |
-
:param topic: Topic string
|
216 |
-
:param min_match: Minimum number of keyword matches required
|
217 |
-
:return: (title, description, link) or (None, None, None)
|
218 |
-
"""
|
219 |
print("[LOG] Finding relevant articles...")
|
220 |
keywords = re.findall(r'\w+', topic.lower())
|
221 |
-
print(f"[LOG] Topic keywords: {keywords}")
|
222 |
-
|
223 |
for item in items:
|
224 |
title = item.find("title").get_text().strip() if item.find("title") else ""
|
225 |
description = item.find("description").get_text().strip() if item.find("description") else ""
|
226 |
text = f"{title.lower()} {description.lower()}"
|
227 |
matches = sum(1 for kw in keywords if kw in text)
|
228 |
-
print(f"[DEBUG] Checking article: '{title}' | Matches: {matches}/{len(keywords)}")
|
229 |
if matches >= min_match:
|
230 |
link = item.find("link").get_text().strip() if item.find("link") else ""
|
231 |
-
print(f"[LOG] Relevant article
|
232 |
return title, description, link
|
233 |
-
print("[LOG] No relevant articles found based on the current matching criteria.")
|
234 |
return None, None, None
|
235 |
|
236 |
def fetch_article_text(link: str) -> str:
|
237 |
-
print("[LOG] Fetching article text
|
238 |
if not link:
|
239 |
-
print("[LOG] No link provided for fetching article text.")
|
240 |
return ""
|
241 |
try:
|
242 |
resp = requests.get(link)
|
243 |
if resp.status_code != 200:
|
244 |
-
print(f"[ERROR] Failed to fetch article
|
245 |
return ""
|
246 |
soup = BeautifulSoup(resp.text, 'html.parser')
|
247 |
paragraphs = soup.find_all("p")
|
248 |
text = " ".join(p.get_text() for p in paragraphs[:5])
|
249 |
-
print("[LOG] Article text fetched successfully.")
|
250 |
return text.strip()
|
251 |
except Exception as e:
|
252 |
print(f"[ERROR] Error fetching article text: {e}")
|
@@ -270,7 +240,6 @@ def generate_script(system_prompt: str, input_text: str, tone: str, target_lengt
|
|
270 |
"Casual": "like a conversation between close friends, relaxed and informal",
|
271 |
"Youthful": "like how teenagers might chat, energetic and lively"
|
272 |
}
|
273 |
-
|
274 |
chosen_tone = tone_description.get(tone, "casual")
|
275 |
|
276 |
prompt = (
|
@@ -292,6 +261,7 @@ def generate_script(system_prompt: str, input_text: str, tone: str, target_lengt
|
|
292 |
" ]\n"
|
293 |
"}"
|
294 |
)
|
|
|
295 |
print("[LOG] Sending prompt to Groq:")
|
296 |
print(prompt)
|
297 |
|
@@ -303,176 +273,163 @@ def generate_script(system_prompt: str, input_text: str, tone: str, target_lengt
|
|
303 |
temperature=0.7
|
304 |
)
|
305 |
except Exception as e:
|
306 |
-
print("[ERROR] Groq API error:", e)
|
307 |
raise ValueError(f"Error communicating with Groq API: {str(e)}")
|
308 |
|
309 |
raw_content = response.choices[0].message.content.strip()
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
content = raw_content.replace('```json', '').replace('```', '').strip()
|
314 |
-
start_index = content.find('{')
|
315 |
-
end_index = content.rfind('}')
|
316 |
-
|
317 |
if start_index == -1 or end_index == -1:
|
318 |
-
|
319 |
-
print("[ERROR] Entire response content:")
|
320 |
-
print(content)
|
321 |
-
raise ValueError("Failed to parse dialogue: Could not find JSON object in response.")
|
322 |
|
323 |
-
json_str =
|
324 |
-
|
325 |
-
|
326 |
-
print(json_str)
|
327 |
-
|
328 |
-
try:
|
329 |
-
data = json.loads(json_str)
|
330 |
-
print("[LOG] Script generated successfully.")
|
331 |
-
return Dialogue(**data)
|
332 |
-
except json.JSONDecodeError as e:
|
333 |
-
print("[ERROR] JSON decoding failed:", e)
|
334 |
-
print("[ERROR] Response content causing failure:")
|
335 |
-
print(content)
|
336 |
-
raise ValueError(f"Failed to parse dialogue: {str(e)}")
|
337 |
-
|
338 |
-
# ----------------------------------------------------------------------
|
339 |
-
# We ONLY modify the generate_audio_mp3 flow below to insert random filler words
|
340 |
-
# and modify punctuation (.,!?) for more natural TTS pauses and intonation.
|
341 |
-
# ----------------------------------------------------------------------
|
342 |
|
|
|
|
|
|
|
|
|
343 |
def _make_text_sound_more_human(text: str) -> str:
|
344 |
"""
|
345 |
-
Inserts small filler words and
|
346 |
-
natural-sounding
|
347 |
"""
|
348 |
-
|
349 |
-
# Filler words or short phrases
|
350 |
fillers = ["uh", "um", "ah", "hmm", "you know", "well", "I mean", "like"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
-
#
|
353 |
-
|
354 |
-
pattern = r'([.,?!])'
|
355 |
-
parts = re.split(pattern, text)
|
356 |
-
|
357 |
-
# 2) Process each chunk, occasionally inserting filler words or extra punctuation
|
358 |
-
processed_chunks = []
|
359 |
-
for i in range(len(parts)):
|
360 |
-
chunk = parts[i].strip()
|
361 |
-
|
362 |
-
# If the chunk is punctuation, keep it
|
363 |
-
if chunk in [".", ",", "?", "!"]:
|
364 |
-
# Possibly turn "." into "..." or add "..." after "?"
|
365 |
-
if chunk == "." and random.random() < 0.5:
|
366 |
-
chunk = "..."
|
367 |
-
elif chunk == "?" and random.random() < 0.3:
|
368 |
-
# Sometimes add "?!"
|
369 |
-
chunk = "?!"
|
370 |
-
elif chunk == "!" and random.random() < 0.3:
|
371 |
-
# Sometimes add "!!" for more emphasis
|
372 |
-
chunk = "!!"
|
373 |
-
processed_chunks.append(chunk)
|
374 |
-
continue
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
chunk = f"{filler}, {chunk}"
|
382 |
-
else:
|
383 |
-
# Insert near the middle
|
384 |
-
words = chunk.split()
|
385 |
-
mid = len(words) // 2
|
386 |
-
chunk = " ".join(words[:mid] + [f"{filler},"] + words[mid:])
|
387 |
-
|
388 |
-
processed_chunks.append(chunk)
|
389 |
-
|
390 |
-
# 3) Rejoin them carefully with a space or nothing
|
391 |
-
# We'll add a small space after punctuation, so TTS sees them as separate tokens
|
392 |
-
out_text = []
|
393 |
-
for i in range(len(processed_chunks)):
|
394 |
-
if i == 0:
|
395 |
-
out_text.append(processed_chunks[i])
|
396 |
-
else:
|
397 |
-
# If the previous chunk was punctuation or the current chunk is punctuation
|
398 |
-
if processed_chunks[i] in [".", "...", "?", "?!", "!", "!!", ","]:
|
399 |
-
out_text.append(processed_chunks[i])
|
400 |
-
else:
|
401 |
-
out_text.append(" " + processed_chunks[i])
|
402 |
|
403 |
-
|
404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
def generate_audio_mp3(text: str, speaker: str) -> str:
|
407 |
try:
|
408 |
print(f"[LOG] Generating audio for speaker: {speaker}")
|
409 |
|
410 |
-
#
|
411 |
-
|
412 |
-
|
413 |
-
# Define Deepgram API endpoint
|
414 |
-
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
415 |
|
416 |
-
#
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
params["model"] = "aura-asteria-en"
|
424 |
-
elif speaker == "John":
|
425 |
-
params["model"] = "aura-perseus-en"
|
426 |
-
else:
|
427 |
-
raise ValueError(f"Unknown speaker: {speaker}")
|
428 |
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
|
439 |
-
|
440 |
-
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
if 'audio/mpeg' not in content_type:
|
448 |
-
print("[ERROR] Unexpected Content-Type received from Deepgram:", content_type)
|
449 |
-
print("[ERROR] Response content:", response.text)
|
450 |
-
raise ValueError("Unexpected Content-Type received from Deepgram.")
|
451 |
-
|
452 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
453 |
-
for chunk in response.iter_content(chunk_size=8192):
|
454 |
-
if chunk:
|
455 |
-
mp3_file.write(chunk)
|
456 |
-
mp3_temp_path = mp3_file.name
|
457 |
-
print(f"[LOG] Audio received from Deepgram and saved at: {mp3_temp_path}")
|
458 |
-
|
459 |
-
# Normalize audio volume
|
460 |
-
audio_seg = AudioSegment.from_file(mp3_temp_path, format="mp3")
|
461 |
-
audio_seg = effects.normalize(audio_seg)
|
462 |
|
|
|
463 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
464 |
-
|
465 |
-
print("[LOG]
|
466 |
-
|
467 |
-
if os.path.exists(mp3_temp_path):
|
468 |
-
os.remove(mp3_temp_path)
|
469 |
-
print(f"[LOG] Removed temporary MP3 file: {mp3_temp_path}")
|
470 |
-
|
471 |
return final_mp3_path
|
|
|
472 |
except Exception as e:
|
473 |
print("[ERROR] Error generating audio:", e)
|
474 |
raise ValueError(f"Error generating audio: {str(e)}")
|
475 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
def transcribe_youtube_video(video_url: str) -> str:
|
477 |
print("[LOG] Transcribing YouTube video:", video_url)
|
478 |
fd, audio_file = tempfile.mkstemp(suffix=".wav")
|
@@ -494,20 +451,17 @@ def transcribe_youtube_video(video_url: str) -> str:
|
|
494 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
495 |
ydl.download([video_url])
|
496 |
except yt_dlp.utils.DownloadError as e:
|
497 |
-
print("[ERROR] yt-dlp download error:", e)
|
498 |
raise ValueError(f"Error downloading YouTube video: {str(e)}")
|
499 |
|
500 |
print("[LOG] Audio downloaded at:", audio_file)
|
501 |
try:
|
502 |
-
# Run ASR on the downloaded audio
|
503 |
result = asr_pipeline(audio_file)
|
504 |
transcript = result["text"]
|
505 |
print("[LOG] Transcription completed.")
|
506 |
return transcript.strip()
|
507 |
except Exception as e:
|
508 |
-
print("[ERROR] ASR transcription error:", e)
|
509 |
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
|
510 |
finally:
|
511 |
if os.path.exists(audio_file):
|
512 |
os.remove(audio_file)
|
513 |
-
print(f"[LOG] Removed
|
|
|
66 |
def is_sufficient(text: str, min_word_count: int = 500) -> bool:
|
67 |
"""
|
68 |
Determines if the fetched information meets the sufficiency criteria.
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
word_count = len(text.split())
|
71 |
print(f"[DEBUG] Aggregated word count: {word_count}")
|
|
|
74 |
def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
75 |
"""
|
76 |
Queries the Groq API to retrieve additional relevant information from the LLM's knowledge base.
|
|
|
|
|
|
|
|
|
77 |
"""
|
78 |
print("[LOG] Querying LLM for additional information.")
|
|
|
79 |
system_prompt = (
|
80 |
"You are an AI assistant with extensive knowledge up to 2023-10. "
|
81 |
"Provide additional relevant information on the following topic based on your knowledge base.\n\n"
|
|
|
85 |
)
|
86 |
|
87 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
|
|
88 |
try:
|
89 |
response = groq_client.chat.completions.create(
|
90 |
messages=[{"role": "system", "content": system_prompt}],
|
|
|
116 |
|
117 |
summary_parts = []
|
118 |
|
|
|
119 |
wiki_summary = fetch_wikipedia_summary(topic)
|
120 |
if wiki_summary:
|
121 |
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
122 |
|
|
|
123 |
for name, url in sources.items():
|
124 |
try:
|
125 |
items = fetch_rss_feed(url)
|
126 |
if not items:
|
127 |
continue
|
|
|
128 |
title, desc, link = find_relevant_article(items, topic, min_match=2)
|
129 |
if link:
|
130 |
article_text = fetch_article_text(link)
|
|
|
141 |
print(aggregated_info)
|
142 |
|
143 |
if not is_sufficient(aggregated_info):
|
144 |
+
print("[LOG] Insufficient info from primary sources. Fallback to LLM.")
|
145 |
additional_info = query_llm_for_additional_info(topic, aggregated_info)
|
146 |
if additional_info:
|
147 |
aggregated_info += " " + additional_info
|
148 |
else:
|
149 |
+
print("[ERROR] Failed to retrieve additional info from LLM.")
|
150 |
|
151 |
if not aggregated_info:
|
|
|
152 |
return f"Sorry, I couldn't find recent information on '{topic}'."
|
153 |
|
154 |
return aggregated_info
|
|
|
156 |
def fetch_wikipedia_summary(topic: str) -> str:
|
157 |
print("[LOG] Fetching Wikipedia summary for:", topic)
|
158 |
try:
|
|
|
159 |
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
|
160 |
resp = requests.get(search_url)
|
161 |
if resp.status_code != 200:
|
162 |
+
print(f"[ERROR] Failed to fetch Wikipedia search for topic: {topic}")
|
163 |
return ""
|
164 |
data = resp.json()
|
165 |
if len(data) > 1 and data[1]:
|
166 |
title = data[1][0]
|
|
|
167 |
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
|
168 |
s_resp = requests.get(summary_url)
|
169 |
if s_resp.status_code == 200:
|
170 |
s_data = s_resp.json()
|
171 |
if "extract" in s_data:
|
172 |
+
print("[LOG] Wikipedia summary fetched.")
|
173 |
return s_data["extract"]
|
|
|
174 |
return ""
|
175 |
except Exception as e:
|
176 |
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
|
|
|
181 |
try:
|
182 |
resp = requests.get(feed_url)
|
183 |
if resp.status_code != 200:
|
184 |
+
print(f"[ERROR] Failed to fetch RSS feed {feed_url}")
|
185 |
return []
|
186 |
soup = BeautifulSoup(resp.content, "html.parser")
|
187 |
items = soup.find_all("item")
|
188 |
+
print(f"[LOG] Number of items: {len(items)} from {feed_url}")
|
189 |
return items
|
190 |
except Exception as e:
|
191 |
+
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
|
192 |
return []
|
193 |
|
194 |
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
print("[LOG] Finding relevant articles...")
|
196 |
keywords = re.findall(r'\w+', topic.lower())
|
|
|
|
|
197 |
for item in items:
|
198 |
title = item.find("title").get_text().strip() if item.find("title") else ""
|
199 |
description = item.find("description").get_text().strip() if item.find("description") else ""
|
200 |
text = f"{title.lower()} {description.lower()}"
|
201 |
matches = sum(1 for kw in keywords if kw in text)
|
|
|
202 |
if matches >= min_match:
|
203 |
link = item.find("link").get_text().strip() if item.find("link") else ""
|
204 |
+
print(f"[LOG] Relevant article: {title}")
|
205 |
return title, description, link
|
|
|
206 |
return None, None, None
|
207 |
|
208 |
def fetch_article_text(link: str) -> str:
|
209 |
+
print("[LOG] Fetching article text:", link)
|
210 |
if not link:
|
|
|
211 |
return ""
|
212 |
try:
|
213 |
resp = requests.get(link)
|
214 |
if resp.status_code != 200:
|
215 |
+
print(f"[ERROR] Failed to fetch article with status {resp.status_code}")
|
216 |
return ""
|
217 |
soup = BeautifulSoup(resp.text, 'html.parser')
|
218 |
paragraphs = soup.find_all("p")
|
219 |
text = " ".join(p.get_text() for p in paragraphs[:5])
|
|
|
220 |
return text.strip()
|
221 |
except Exception as e:
|
222 |
print(f"[ERROR] Error fetching article text: {e}")
|
|
|
240 |
"Casual": "like a conversation between close friends, relaxed and informal",
|
241 |
"Youthful": "like how teenagers might chat, energetic and lively"
|
242 |
}
|
|
|
243 |
chosen_tone = tone_description.get(tone, "casual")
|
244 |
|
245 |
prompt = (
|
|
|
261 |
" ]\n"
|
262 |
"}"
|
263 |
)
|
264 |
+
|
265 |
print("[LOG] Sending prompt to Groq:")
|
266 |
print(prompt)
|
267 |
|
|
|
273 |
temperature=0.7
|
274 |
)
|
275 |
except Exception as e:
|
|
|
276 |
raise ValueError(f"Error communicating with Groq API: {str(e)}")
|
277 |
|
278 |
raw_content = response.choices[0].message.content.strip()
|
279 |
+
start_index = raw_content.find('{')
|
280 |
+
end_index = raw_content.rfind('}')
|
|
|
|
|
|
|
|
|
|
|
281 |
if start_index == -1 or end_index == -1:
|
282 |
+
raise ValueError("Failed to parse dialogue: No JSON found.")
|
|
|
|
|
|
|
283 |
|
284 |
+
json_str = raw_content[start_index:end_index+1].strip()
|
285 |
+
data = json.loads(json_str)
|
286 |
+
return Dialogue(**data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
# -------------------------------------------------------------
|
289 |
+
# Helper function: Insert random filler words, extra punctuation
|
290 |
+
# BUT we'll handle that chunk by chunk (see below).
|
291 |
+
# -------------------------------------------------------------
|
292 |
def _make_text_sound_more_human(text: str) -> str:
|
293 |
"""
|
294 |
+
Inserts small filler words and modifies punctuation
|
295 |
+
for more natural-sounding speech.
|
296 |
"""
|
|
|
|
|
297 |
fillers = ["uh", "um", "ah", "hmm", "you know", "well", "I mean", "like"]
|
298 |
+
# Insert filler sometimes at start or middle:
|
299 |
+
if text and random.random() < 0.4:
|
300 |
+
filler = random.choice(fillers)
|
301 |
+
if random.random() < 0.5:
|
302 |
+
text = f"{filler}, {text}"
|
303 |
+
else:
|
304 |
+
words = text.split()
|
305 |
+
mid = len(words) // 2
|
306 |
+
text = " ".join(words[:mid] + [f"{filler},"] + words[mid:])
|
307 |
|
308 |
+
# Possibly turn periods into "..." to force a pause
|
309 |
+
text = re.sub(r'\.(\s|$)', lambda m: "..." + m.group(1), text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
+
# Possibly turn "?" into "?!" or "!!" for exclamation
|
312 |
+
if random.random() < 0.2:
|
313 |
+
text = text.replace("?", "?!")
|
314 |
+
if random.random() < 0.2:
|
315 |
+
text = text.replace("!", "!!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
return text.strip()
|
318 |
+
|
319 |
+
def _split_into_sentences_and_phrases(text: str):
|
320 |
+
"""
|
321 |
+
Splits the text into smaller chunks so each chunk can be TTS-ed
|
322 |
+
individually for better pacing. We'll look for ., !, or ?
|
323 |
+
as sentence boundaries. Also splits by commas for short phrases.
|
324 |
+
"""
|
325 |
+
# Split by sentence enders with a lookbehind to keep delimiters separate.
|
326 |
+
# We can then further split by commas if the sentence is long.
|
327 |
+
# E.g. "Hello there. This is a test?" => ["Hello there.", "This is a test?"]
|
328 |
+
# Then if "Hello there." is too big, we might split by commas as well.
|
329 |
+
boundaries = re.split(r'([.?!])', text)
|
330 |
+
|
331 |
+
# Rebuild into "sentence + punctuation" pairs
|
332 |
+
phrases = []
|
333 |
+
for i in range(0, len(boundaries), 2):
|
334 |
+
if i + 1 < len(boundaries):
|
335 |
+
chunk = (boundaries[i] + boundaries[i+1]).strip()
|
336 |
+
else:
|
337 |
+
chunk = boundaries[i].strip()
|
338 |
+
if chunk:
|
339 |
+
# Now optionally split chunk by commas if it's too big
|
340 |
+
subparts = chunk.split(',')
|
341 |
+
# If there's more than 1 subpart, rejoin them carefully so each subpart can be TTS-ed on its own
|
342 |
+
for idx, sp in enumerate(subparts):
|
343 |
+
part = sp.strip()
|
344 |
+
if part:
|
345 |
+
# Re-add comma except on the last one
|
346 |
+
if idx < len(subparts) - 1:
|
347 |
+
part += ","
|
348 |
+
phrases.append(part)
|
349 |
+
return phrases
|
350 |
|
351 |
def generate_audio_mp3(text: str, speaker: str) -> str:
|
352 |
try:
|
353 |
print(f"[LOG] Generating audio for speaker: {speaker}")
|
354 |
|
355 |
+
# Step 1: Split text into small pieces (phrases, sentences)
|
356 |
+
fragments = _split_into_sentences_and_phrases(text)
|
|
|
|
|
|
|
357 |
|
358 |
+
# Step 2: For each fragment, transform it to be more human-like, TTS it, then combine
|
359 |
+
all_segments = []
|
360 |
+
for frag in fragments:
|
361 |
+
if not frag.strip():
|
362 |
+
continue
|
363 |
|
364 |
+
# Make the chunk more "human"
|
365 |
+
human_chunk = _make_text_sound_more_human(frag)
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
# TTS this chunk
|
368 |
+
mp3_path = _tts_chunk(human_chunk, speaker)
|
369 |
+
seg = AudioSegment.from_file(mp3_path, format="mp3")
|
370 |
+
seg = effects.normalize(seg)
|
371 |
+
all_segments.append(seg)
|
372 |
|
373 |
+
# Clean up
|
374 |
+
if os.path.exists(mp3_path):
|
375 |
+
os.remove(mp3_path)
|
376 |
|
377 |
+
if not all_segments:
|
378 |
+
raise ValueError("No audio segments produced.")
|
379 |
|
380 |
+
# Step 3: Combine segments with a short silence between
|
381 |
+
final_audio = all_segments[0]
|
382 |
+
short_silence = AudioSegment.silent(duration=300) # 300ms silence
|
383 |
+
for seg in all_segments[1:]:
|
384 |
+
final_audio = final_audio + short_silence + seg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
+
# Step 4: Save combined
|
387 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
388 |
+
final_audio.export(final_mp3_path, format="mp3")
|
389 |
+
print("[LOG] Combined audio saved at:", final_mp3_path)
|
|
|
|
|
|
|
|
|
|
|
390 |
return final_mp3_path
|
391 |
+
|
392 |
except Exception as e:
|
393 |
print("[ERROR] Error generating audio:", e)
|
394 |
raise ValueError(f"Error generating audio: {str(e)}")
|
395 |
|
396 |
+
def _tts_chunk(text: str, speaker: str) -> str:
|
397 |
+
"""
|
398 |
+
Helper function to do TTS on a single chunk of text
|
399 |
+
(so we can call multiple times).
|
400 |
+
"""
|
401 |
+
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
402 |
+
params = {
|
403 |
+
"model": "aura-asteria-en", # default female
|
404 |
+
}
|
405 |
+
if speaker == "John":
|
406 |
+
params["model"] = "aura-perseus-en"
|
407 |
+
|
408 |
+
headers = {
|
409 |
+
"Accept": "audio/mpeg",
|
410 |
+
"Content-Type": "application/json",
|
411 |
+
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
|
412 |
+
}
|
413 |
+
body = {
|
414 |
+
"text": text
|
415 |
+
}
|
416 |
+
|
417 |
+
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
418 |
+
if response.status_code != 200:
|
419 |
+
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
|
420 |
+
|
421 |
+
content_type = response.headers.get('Content-Type', '')
|
422 |
+
if 'audio/mpeg' not in content_type:
|
423 |
+
raise ValueError("Unexpected Content-Type from Deepgram.")
|
424 |
+
|
425 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
426 |
+
for chunk in response.iter_content(chunk_size=8192):
|
427 |
+
if chunk:
|
428 |
+
mp3_file.write(chunk)
|
429 |
+
mp3_path = mp3_file.name
|
430 |
+
|
431 |
+
return mp3_path
|
432 |
+
|
433 |
def transcribe_youtube_video(video_url: str) -> str:
|
434 |
print("[LOG] Transcribing YouTube video:", video_url)
|
435 |
fd, audio_file = tempfile.mkstemp(suffix=".wav")
|
|
|
451 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
452 |
ydl.download([video_url])
|
453 |
except yt_dlp.utils.DownloadError as e:
|
|
|
454 |
raise ValueError(f"Error downloading YouTube video: {str(e)}")
|
455 |
|
456 |
print("[LOG] Audio downloaded at:", audio_file)
|
457 |
try:
|
|
|
458 |
result = asr_pipeline(audio_file)
|
459 |
transcript = result["text"]
|
460 |
print("[LOG] Transcription completed.")
|
461 |
return transcript.strip()
|
462 |
except Exception as e:
|
|
|
463 |
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
|
464 |
finally:
|
465 |
if os.path.exists(audio_file):
|
466 |
os.remove(audio_file)
|
467 |
+
print(f"[LOG] Removed temp audio file: {audio_file}")
|